Acta Physiologiae Plantarum

, Volume 24, Issue 4, pp 385–392 | Cite as

Comparative physiological effects of three allelochemicals and two herbicides on Dactylis glomerata

  • Begoña Durán-Serantes
  • Luis González
  • Manuel J. Reigosa


Effects of three allelochemicals (2-benzoxazolinone (BOA), p-hydroxybenzoic, and ferulic acid) and two herbicides (linuron and fluometuron) on chlorophyll fluorescence, photosynthesis, accumulation of free proline and polyamines, and total content of soluble proteins were measured to assess herbicidal activity on Dactylis glomerata. The application of chemicals generally reduced Fv/Fm (more than 25 % with p-hydroxybenzoic acid, BOA, or linuron). BOA decreased the quantum efficiency of PSII temporarily, but it did not affect photosynthesis. Polyamine content was very low, while proline content was markedly affected by some of the chemicals, thus producing some osmotic adjustment. Ferulic acid did not cause any physiological effect at all. BOA and p-hydroxybenzoic acid caused significant changes in various physiological traits of Dactylis glomerata, specially interfering with the quantum efficiency of the PSII.

Key words

Allelochemicals 2-benzoxazolinone Dactylis glomerata Ferulic acid Fluometuron Fluorescence Linuron p-Hydroxybenzoic acid Photosynthesis 

List of abbreviations


net photosynthesis rate




fluorescence monitoring system


minimal fluorescence in the dark adapted state-yield of intrinsic fluorescence


yield of variable fluorescence in dark adapted state




maximal fluorescence in the dark adapted state


photochemical trapping efficiency of the dark adapted state


maximal fluorescence in the light adapted state




steady state fluorescence yield


Photosystem II photochemical efficiency in the light-adapted state


photosystem I


photosystem II


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon D. I., Hoagland D.R. 1940. Crop production in artificial solutions and in soils with special reference to factors influence yields and absorption of inorganic nutrients. Soil Sci. 50: 463–485.Google Scholar
  2. Babani F., Lichtenthaler H.K. 1996. Light-induced and age-dependent development of chloroplast in etiolated barley leaves as visualized by determination of photosynthetic pigments, CO2 assimilation rates and different kinds of chlorophyll fluorescence ratios. J. Plant Physiol. 148: 555–566.Google Scholar
  3. Blum U., Shafer S.R. 1988. Microbial populations and phenolic acid in soil. Soil Biol. Biochem. 20: 793–800.CrossRefGoogle Scholar
  4. Cameron H.J., Julian G.R. 1980. Inhibition of protein synthesis in lettuce (Lactuca sativa L.) by allelopathic compounds. J. Chem. Ecol. 6: 989–995.CrossRefGoogle Scholar
  5. Chase W.C., Nair M.G., Putman R. 1991. 2,2-oxo-1,1-azobenzene: selective toxicity of rye allelochemicals to weed and crop species II. J. Chem. Ecol. 17: 9–19.CrossRefGoogle Scholar
  6. Cobb A. 1992. Herbicides that inhibit photosynthesis. In: Herbicides and Plant Physiology. Chapman and Hall, London.Google Scholar
  7. Corcuera L.J., Woodward M.D., Helgeson J.P., Kelman A., Upper C.D. 1978. 2,4-dihydroxy-7-methoxy-2h-1,4-benzoxazin-3(4h)-one, an inhibitor from Zea mays with differential activity against soft rotting erwinia species. Plant Physiol. 61: 791–795.PubMedGoogle Scholar
  8. Cuevas L., Niemayer H.M., Johnsson L.M.V. 1992. Partial purification and characterization of a hydroxamic acid glucoside (D-glucosidase from maize). Phytochem. 31: 2609–2612.CrossRefGoogle Scholar
  9. Devi S.R., Prasad M.N.V. 1996. Influence of ferulic acid on photosynthesis of maize: analysis of CO2 assimilation, electron transport activities, fluorescence emission and photophosphorylation. Photosynthetica 32: 117–127.Google Scholar
  10. Einhelling F.A. 1993. Allelopathy: Current Status and Future Goals. In Allelopathy, Organisms, Processes, and Applications, pp. 1–23; Inderjit; Dakshini KMM and F.A. Einhellig (eds.); ACS Symposium Series, Ames, Iowa.Google Scholar
  11. Friebe A., Wieland I., Schulz M. 1996. Tolerance of Avena sativa to the allelochemical benzoxazolinone. degradation of BOA by root-colonizing bacteria. J. Appl. Bot. 70: 150–154.Google Scholar
  12. Galston A.W., Kaur-Sawhney R. 1990. Polyamines in plant physiology. Plant Physiol. 94: 406–410.PubMedCrossRefGoogle Scholar
  13. González L., Souto X.C., Reigosa M.J. 1997. Weed control by Capsicum annuum. Allelopathy J. 4: 101–110.Google Scholar
  14. González-Moro B., Lacuesta M., Iriberri N., Muňoz-Rueda A., Gonzalez-Murua C. 1997. Comparative effects of PPT and AOA on photosynthesis and fluorescence chlorophyll parameters in Zea mays. J. Plant Physiol. 151: 641–648.Google Scholar
  15. Hanson A.D. 1980. Interpreting the metabolic responses of plants to water stress. Hort. Sci. 15: 623–629.Google Scholar
  16. Ireland C.R., Percival M.P., Baker N.R. 1986. Modification of the induction of photosynthesis in wheat by glyphosate, an inhibitor of amino acid metabolism. J. Exp. Bot. 37: 299–308.CrossRefGoogle Scholar
  17. Krause G.H., Weis E. 1984. Chlorophyll fluorescence as a tool in Plant Physiology. II. interpretation of fluorescence signals. Photosynth. Res. 5: 139–157.CrossRefGoogle Scholar
  18. Macías F.A. 1993. Allelopathy in Search for Natural Herbicide Models. In Allelopathy, Organisms, Processes, and Applications, pp. 310–329; Inderjit, Dakshini KMM and FA Einhellig (eds.); ACS Symposium Series, Ames, Iowa.Google Scholar
  19. Manchikatla V.R. 1997. Polyamines. In Plant Ecophysiology, pp. 343–374; Prasad MNV (ed.); John Wiley & Sons; Inc; New York.Google Scholar
  20. Maxwell K., Johnson, G.N. 2000. Chlorophyll fluorescence — a practical guide. J. Exp. Bot. 51: 659–668.PubMedCrossRefGoogle Scholar
  21. Mersie W., Singh M. 1993. Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet-leaf. J. Chem. Ecol. 19: 1293–1130.CrossRefGoogle Scholar
  22. Niemayer H.M. 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the gramineae. Phytochem. 27: 3349–3358.CrossRefGoogle Scholar
  23. Paleg L.G., Stewart G.R., Bradbeer J.W. 1984. Proline and glycine-betaine influence protein solvation. Plant Physiol. 75: 974–978.PubMedGoogle Scholar
  24. Pedrol N., Ramos, P., Reigosa, M.J. 2000. Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. J. Plant Physiol. 157: 383–393.Google Scholar
  25. Pedrol N., Tiburcio, A.F. 2001. Polyamines determination by TLC and HPLC. In: Handbook of Plant Ecophysiology Techniques, 335–363. Ed. M.J. Reigosa. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  26. Perez F.J., Ormeňo-Nuňez J. 1991. Difference in hydroxamic acid content in roots and root exudates of wheat and rye: possible role in allelopathy. J. Chem. Ecol. 17: 1037–1043.CrossRefGoogle Scholar
  27. Powell R.G., Spencer G.F. 1987. Phytochemical inhibitors of velvet leaf (Abutilon theophrasti). Germination as models for new biorational herbicides. In: Biologically Active Natural Products. Potential Use in Agriculture, pp. 211–232; Cutler HG (ed.).Google Scholar
  28. Ramos P., Pedrol N. 2001. Free proline quantification. In: Handbook of Plant Ecophysiology Techniques, 365–382. Ed. M.J. Reigosa. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  29. Reigosa M.J., Weiss O. 2001. Fluorescence techniques. In: Handbook of Plant Ecophysiology Techniques, 155–171. Ed. M.J. Reigosa. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  30. Reigosa M.J., Sánchez-Moreiras A.M., González L. 1999a. Ecophysiological Approach in Allelopathy. Critical Reviews in Plant Sci. 18: 577–608.CrossRefGoogle Scholar
  31. Reigosa M.J., González L., Souto X.C. 1999b. Effect of phenolic compounds on the germination of six weed species. Plant Growth Regul. 28: 83–88.CrossRefGoogle Scholar
  32. Rice E.L. 1984. Allelopathy, 2nd ed. pp. 422. Academic Press, New York.Google Scholar
  33. Romera E., Dominguez C., Calero M.D., De Prado R. 1992. Efecto del fluometuron sobre dos variedades de algodón: Coker-310 y Crema. Actas Congreso Sociedad EspaZola de Malherbologia 307–310.Google Scholar
  34. Singh K.P., Singh K. 1993. Influence of stimulated water stress on free proline accumulation in Triticum aestivum L. (wheat). Indian J. Plant Physiol. 26: 319–321.Google Scholar
  35. Weiss, O., Reigosa M.J. 2001. Modulated fluoresence. In: Handbook of Plant Ecophysiology Techniques, 173–183. Ed. M.J. Reigosa. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  36. Weston L.A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88: 860–866.CrossRefGoogle Scholar
  37. Yamane A., Nishimura H., Mizutani J. 1992. Allelopathy of yellow fieldcrest (Rorippa sylvestris): identification and characterization of phytotoxic constituents. J. Chem. Ecol. 18: 683–691.CrossRefGoogle Scholar
  38. Yoshiba Y., Kiyosue T., Nakashima K., Yamaguchi-Shinozaki K., Shinozaki K. 1997. Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol. 38: 1095–1102.PubMedGoogle Scholar
  39. Yu J.Q., Matsui Y. 1994. Phytotoxic substances in root exudates of cucumber (Cucumis sativus L.). J. Chem. Ecol 20: 21–31.CrossRefGoogle Scholar
  40. Zhu H., Malli A.U. 1994. Interactions between kalmia and black spruce: isolation and identification of allelopathic compounds. J. Chem. Ecol. 20: 407–421.CrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2002

Authors and Affiliations

  • Begoña Durán-Serantes
    • 1
  • Luis González
    • 1
  • Manuel J. Reigosa
    • 1
  1. 1.Lab. Plant Ecophysiology, Facultade de Ciencias de VigoUniversidade de VigoVigoSpain

Personalised recommendations