Advertisement

Acta Physiologiae Plantarum

, Volume 24, Issue 1, pp 11–17 | Cite as

Kinetics of 14C-labelled sucrose, myo-inositol and phosphatidylcholine uptake during induction and differentiation in Brassica napus callus culture

  • Iwona Żur
  • Andrzej Skoczowski
  • Sebastian Pieńkowski
  • Franciszek Dubert
Article

Abstract

The uptake rate of 14C-labelled sucrose, myo-inositol and PC was studied in callus cultures of two oilseed rape cultivars, characterized by different in vitro regeneration ability. Transfer of calli onto regeneration stimulating medium resulted in changes of examined substances uptake rate, which were depended on tissue morphogenic potential. Non-regenerating calli of both cultivars increased uptake rate of sucrose whereas changes in incorporation of other compounds were under genome control. Significant increase of uptake rate of all tested compounds was observed as result of organogenesis initiation. Such differences, in the responses of organogenic and non-organogenic tissue indicate that this parameter could be useful as marker of organogenesis

A correlation was observed between the rate of sucrose uptake and its concentration in the medium, which suggests an advantage to passive transport through the callus cell membrane. Lack of such correlation in the case of other labels indicates that this processes are selective and under cell control.

Key words

Brassica napus callus culture myo-inositol phosphatidylcholine oilseed rape regeneration ability sucrose uptake rate 

List of abbreviations

BAP

6-benzylaminopurine

2,4-D

2,4-dichlorophenoxyacetic acid

DPM

disintegration per minute

DW

dry weight

GA3

gibberellic acid

MS

basal Murashige and Skoog medium (1962)

PC

phosphatidylcholine

PI

phosphatidylinositol

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhardwaj L., Mérillon J.-M., Ramawat K.G. 1995. Changes in the composition of membrane lipids in relation to differentiation in Aegle marmelos callus culture. Plant Cell Tiss. Org. Cult. 42: 33–37.CrossRefGoogle Scholar
  2. Browse J., Somerville C. 1991. Glycerolipid metabolism, biochemistry and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 467–506.CrossRefGoogle Scholar
  3. Caldwell C. L., Withman C. E. 1987. Temperature-induced protein conformational changes in barley root plasma membrane-enriched microsomes. Plant Physiol. 84: 918–923.PubMedGoogle Scholar
  4. Carruthers A., Melchior D. L. 1986. How bilayer lipids affect membrane protein activity. TIBS 11:331–335,Google Scholar
  5. Chuong P.V., Pauls K.P., Beversdorf W.D. 1985. A simple culture method for Brassica hypocotyl protoplasts. Plant Cell Rep. 4: 4–6.CrossRefGoogle Scholar
  6. Drøbak B.K. 1992. The plant phosphoinositide system. Biochem J. 288: 697–712.PubMedGoogle Scholar
  7. Drory A., Borohov A., Mayak S. 1992. Transient water stress and phospholipid turnover in carnation flowers. J. Plant Physiol. 140: 116–120.Google Scholar
  8. Dureja-Munjal I., Acharya M. K., Guha-Mukherjee S. 1992. Effect of hormones and spermidine on the turnover of inositolphospholipids in Brassica seedlings. Phytochemistry 31: 1161–1163.CrossRefGoogle Scholar
  9. Duxbury C. L., Legge R. L., Paliyath G., Barber R. F., Thompson J. E. 1991. Alternations in membrane protein conformation in response to senescence-related changes. Phytochemistry 30: 63–68.CrossRefGoogle Scholar
  10. Ettlinger C., Lehle L., 1988. Auxin induces rapid changes in phosphatidylinositol metabolites. Nature 331: 176–178.PubMedCrossRefGoogle Scholar
  11. Fuchs A., De Vries F.W. 1972. A comparison of methods for the preparation of 14C-labelled plant tissues for liquid scintillation counting. Int. Appl. Radiation Isotopes 23: 361–369.CrossRefGoogle Scholar
  12. Glimelius K. 1984. High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. J. Physiol. Plant. 61: 38–44.CrossRefGoogle Scholar
  13. Graham I.A., Denby K.J., Leaver C.J. 1994. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6: 761–772.PubMedCrossRefGoogle Scholar
  14. Hith W. D., Card P. J., Ripp K. G. 1986. Substrate recognition by a sucrose transporting protein. J. Biol. Chem. 261: 11986–11991.Google Scholar
  15. Julliard J., Sossountzov L., Habricot Y., Pelletier G. 1992. Hormonal requirement and tissue competancy for shoot organogenesis intwo cultivars of Brassica napus. Physiol. Plant. 84: 521–530.CrossRefGoogle Scholar
  16. Kirti P.B. 1988. Somatic embryogenesis in hypocotyl protoplast culture of rapeseed (Brassica napus L.). Plant Breeding 100: 222–224.CrossRefGoogle Scholar
  17. Kuiper P.J.C. 1985. Environmental changes and lipid metabolism of higher plants. Physiol. Plant. 64: 118–122.CrossRefGoogle Scholar
  18. Mangat B.S., Pelekis M. K., Cassells A.C. 1990. Changes in the starch content during organogenesis in in vitro cultured Begonia rex stem explants. Physiol. Plant. 79: 267–274.CrossRefGoogle Scholar
  19. Manoharan K., Prasad R., Guha-Mukherjee S. 1987. Greening and shoot-differentiation related lipid changes in callus cultures of Datura innoxia. Phytochemistry 26: 407–410.CrossRefGoogle Scholar
  20. Martin A.B., Cuadraro Y., Guerra H., Gallego P., Hita O., Martin L., Dorado A., Villalobos N. 2000. Differences in the content of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci. 154: 143–151.PubMedCrossRefGoogle Scholar
  21. Morse M. J., Crain R. C., Coté G. G., Satter R. L. 1989. Light-stimulated inositol phospholipid turnover in Samanea saman pulvini. Plant Physiol. 89: 724–727.PubMedCrossRefGoogle Scholar
  22. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.CrossRefGoogle Scholar
  23. Ono Y., Takahata Y., Kaizuma N. 1994. Effect of genotype on shoot regeneration from cotyledonary explants of rapeseed (Brassica napus L.) Plant Cell Rep. 14: 13–17.CrossRefGoogle Scholar
  24. Orczyk W., Nadolska-Orczyk A. 1994. Plant regeneration from hypocotyl protoplasts of winter oilseed rape (Brassica napus L.). Acta Soc. Bot. Pol. 63: 147–151.Google Scholar
  25. Pauk J., Fekete S., Vilkki J., Pull S. 1991. Protoplast culture and plant regeneration of different agronomically important Brassica species and varieties. J. Agric. Sci. in Finland 63: 371–378.Google Scholar
  26. Pihakaski-Maunsbach K., Brauner Nygaard K., Jensen K. H., Rasmussen O. 1993. Cellular changes in early development of regenerating thin cell layer-explants of rapeseed analyzed by light and electron microscopy. Physiol. Plant. 87: 167–176.CrossRefGoogle Scholar
  27. Rawal S. K., Dwivedi U. N., Khan B. M., Mascarenhas A. F. 1985. Biochemical aspects of shoot differentiation in sugarcane callus: II. Carbohydrate metabolizing enzymes. J. Plant Physiol. 119: 191–199.Google Scholar
  28. Stanzel M., Sjolund R. D., Komor E. 1988. Transport of glucose, fructose and sucrose by Strepthanthus tortousus suspension cells. II. Uptake at high sugar concentrations. Planta 174: 210–216.CrossRefGoogle Scholar
  29. Taylor C. B. 1997. Sweet Sensations. Plant Cell 9: 1–4.CrossRefGoogle Scholar
  30. Tran Thanh Van K. 1981. Control of morphogenesis in in vitro cultures. Annu. Rev. Plant Physiol. 32: 291–311.CrossRefGoogle Scholar
  31. Williams M., Francis D., Hann A. C., Harwood J. L. 1991. Changes in lipid composition during callus differentiation in cultures of oilseed rape (Brassica napus L.). J. Exp. Bot. 42: 1551–1556.CrossRefGoogle Scholar
  32. Wilson K. J., Stillwell W., Maxam T., Baldridge T. 1991. Membrane fluidity changes in embryogenic and non-embryogenic cultures of Asclepias and Daucus in response to auxin removal. Physiol. Plant. 82: 633–639.CrossRefGoogle Scholar
  33. Xu Z.-H., Davey M. R., Cocking E. C. 1982. Plant regeneration from root protoplasts of Brassica. Plant Sci. Lett. 24: 117–124.CrossRefGoogle Scholar
  34. Żur I. 1997. Fizjologiczne wskaźniki zdolności tkanki kalusowej rzepaku (Brassica napus) do różnicowania. Praca doktorska, AR, Kraków. (Physiological indicators of differentiation ability of oilseed rape (Brassica napus) callus. Ph.D. thesis).Google Scholar
  35. Żur I., Skoczowski A., Niemczyk E., Dubert F. (in press). Changes in the composition of fatty acids and sterols of membrane lipids during induction and differentiation of Brassica napus (var. oleifera L.) callus. Acta Physiol. Plant., in press.Google Scholar

Copyright information

© Department of Plant Physiology 2002

Authors and Affiliations

  • Iwona Żur
    • 1
  • Andrzej Skoczowski
    • 1
  • Sebastian Pieńkowski
    • 1
  • Franciszek Dubert
    • 1
  1. 1.The Franciszek Górski, Department of Plant PhysiologyPolish Academy of SciencesKrakówPoland

Personalised recommendations