Advertisement

Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants

  • Marian Saniewski
  • Junichi Ueda
  • Kensuke Miyamoto
Review

Abstract

Growth and development of plants are regulated by interactions among different plant growth substances. During stress conditions, both abiotic and biotic, interaction of the some hormones activates defense responses. The present review describes the interaction between jasmonates and auxin in regulation of some physiological processes in plant growth and development. Some jasmonate-induced processes reduced by auxins and some auxin stimulated physiological processes inhibited by jasmonates are the focus of this review. Therefore, the following physiological processes are described: stem cell growth, abscission, secondary abscission zone formation, tendril coiling, opening of the pulvinules in Mimosa pudica, wounding and induced gene expression, nicotine biosynthesis and auxin biosynthesis in Brassicaceae.

Key words

auxins gene expression jasmonates regulation of physiological processes 

List of abbreviations

ADC

arginine decarboxylase

BAP

benzylaminopurine

CAT

chloramphenicol acetyl transferase

CDI

cathepsin D inhibitor

CHS

chalcone synthase

2,4-D

2,4-dichlorophenoxyacetic acid

HPL

hydroperoxide lyase

IAA

indole-3-acetic acid

IAN

indole-3-acetonitrile

IAOX

indole-3-acetaldoxime

IBA

indole butyric acid

IMG

indole-3-methylglucosinolate

IPA

indole propionic acid

JA

jasmonic acid

JA-Me

methyl jasmonate

LOX

lipoxygenase

NAA

naphthalene acetic acid

ODC

ornithine decarboxylase

PAA

phenylacetic acid

PI

proteinase inhibitor

PMT

putrescine N-methyltransferase

SAMDC

S-adenosylmethionine decarboxylase

SAMS

S-adenosylmethionine synthase

2,4,5-T

2,4,5-trichlorophenoxyacetic acid

VSP

vegetative storage protein

References

  1. Aldridge D. C., Galt S., Giles D., Turner W. B., 1971. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. Chem. Commun., 1623–1627.Google Scholar
  2. Anderson J.M., 1988. Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings. J. Plant Growth Regul., 7: 203–211.CrossRefGoogle Scholar
  3. Anderson J.M., 1991. Jasmonic acid-dependent increase in vegetative storage protein in soybean tissue cultures. J. Plant Growth Regul., 10: 5–10.CrossRefGoogle Scholar
  4. Baldwin I.T., 1989. The mechanism of damaged-induced alkaloids in wild tobacco. J. Chem. Ecol., 15: 1661–1680.CrossRefGoogle Scholar
  5. Baldwin I.T., 1996. Methyl jasmonate-induced nicotine production in Nicotiana attenuata: inducing defenses in the field without wounding. Entomol. Exper. Applicata, 80: 213–220.CrossRefGoogle Scholar
  6. Baldwin I.T., Oesch R.C., Merhige P.M., Hayes K., 1993. Damage-induced root nitrogen metabolism in Nicotiana sylvestris: Testing C/N predictions for alkaloid production. J. Chem. Ecol., 19: 3029–3043.CrossRefGoogle Scholar
  7. Baldwin I.T., Schmelz E.A., Ohnmeiss T.E., 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J. Chem. Ecol., 20: 2139–2157.CrossRefGoogle Scholar
  8. Baldwin I.T., Schmelz E.A., Zhang Z.-P., 1996. Effects of octadecanoic metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris. J. Chem. Ecol., 22: 61–74.CrossRefGoogle Scholar
  9. Baldwin I.T., Zhang Z.-P., Diab N., Ohnmeiss T.E., MnCloud E.S., Lynds G.Y., Schmelz E.A., 1997. Quantification, correlations, and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta, 201: 397–404.CrossRefGoogle Scholar
  10. Bell E., Mullet J. E., 1991. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol. Gen. Genet., 230: 456–462.PubMedCrossRefGoogle Scholar
  11. Blechert S., Bockelmann C., Fusslein M., Schrader T.V., Stelmach B., Niesel U., Weiler E.W., 1999. Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta, 207: 470–479.CrossRefGoogle Scholar
  12. Bodnaryk R.P., 1994. Potent effect of jasmonates of indole glucosinolates in oilseed rape and mustard. Phytochemistry, 35: 301–305.CrossRefGoogle Scholar
  13. Creelman R.A., Tierney M.L., Mullet J.E., 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA, 89: 4938–4941.PubMedCrossRefGoogle Scholar
  14. Creelman R.A., Mullet J.E., 1997. Oligosaccharides, brassinolides, and jasmonates: Nontraditional regulators of plant growth, development, and gene expression. Plant Cell, 9: 1211–1223.PubMedCrossRefGoogle Scholar
  15. Demole E., Lederer E., Mercier D., 1962. Isolement et determination de la structure du l’essence de jasmin. Helv. Chem. Acta, 45: 675–685.CrossRefGoogle Scholar
  16. DeWald D.B., Sadka A., Mullet J.E., 1994. Sucrose modulation of soybean VSP gene expression in inhibited by auxin. Plant Physiol., 104: 439–444.PubMedGoogle Scholar
  17. Doughtly K.J., Kiddle G.A., Pye B.J., Wallsgrove R.M., Pickett J.A., 1995. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry, 38: 347–350.CrossRefGoogle Scholar
  18. Facchini P.J., 2001. Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52: 29–66.PubMedCrossRefGoogle Scholar
  19. Falkenstein E., Groth B., Mithofer A., Weiler E.W., 1991. Methyl jasmonate and linolenic acid are potent inducers of tendril coiling. Planta, 185:316–322.CrossRefGoogle Scholar
  20. Farmer E.E., Ryan C.A., 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA, 87: 7713–7716.PubMedCrossRefGoogle Scholar
  21. Franceschi V.R., Grimes H.D., 1991. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA, 88: 6745–6749.PubMedCrossRefGoogle Scholar
  22. Feth F., Wagner R., Wagner K.G., 1986. Regulation in tobacco callus of enzyme activities of the nicotine pathway. I. The route ornithine to methylpyrroline. Planta, 168: 402–407.CrossRefGoogle Scholar
  23. Gantet P., Imbault N., Thiersault M., Doireau P., 1998. Necessity of a functional octadecanic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspension cultured in an auxin-starved medium. Plant Cell Physiol., 39: 220–225.Google Scholar
  24. Graham J.S., Hall G., Pearce G., Ryan C.A., 1989. Regulation of synthesis of proteinase inhibitor I and II mRNAs in leaves of wounded tomato plants. Planta, 169: 399–405.CrossRefGoogle Scholar
  25. Grsic S., Kirchheim B., Pieper K., Fritsch M., Hilgenberg W., Ludwig-Muller J., 1999. Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol. Plant., 105: 521–531.CrossRefGoogle Scholar
  26. Hamberg M., Gardner H.G., 1992. Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochem. Biophys. Acta, 1165: 1–18.PubMedGoogle Scholar
  27. Hibi N., Higashiguchi S., Hashimoto T., Yamada Y., 1994. Gene expression in tobacco low-nicotine mutants. Plant Cell, 6: 723–735.PubMedCrossRefGoogle Scholar
  28. Horton R.F. 1976. The regulation of stem abscission in succulents. Ninth Intl. Conf. Plant Growth Subst. Collected Abstracts, Lausanne P. E., Pilet ed., pp.152–153.Google Scholar
  29. Imanishi S., Hashizume K., Nakakita M., Kojima H., Matsubayashi Y., Hashimoto T., Sakagami Y., Yamada Y., Nakamura K., 1998. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol., 38: 1101–1111.PubMedCrossRefGoogle Scholar
  30. Irving H.R., Dyson G., McConchie R., Parish R.W., Gehring C.A., 1999. Effects of exogenously applied jasmonates on growth and intracellular pH in maize coleoptile segments. J. Plant Growth Regul., 18: 93–100.PubMedCrossRefGoogle Scholar
  31. Ishikawa A., Yoshihara T., Nakamura K., 1994a. Structure-activity relationships of jasmonates in the induction of expression of two proteinase inhibitor genes of potato. Biosci. Biotech. Biochem., 58: 544–547.CrossRefGoogle Scholar
  32. Ishikawa A., Yoshihara T., Nakamura K., 1994b. Jasmonate-inducible expression of a potato cathepsin D inhibitor-GUS gene fusion in tobacco cells. Plant Mol. Biol., 26: 403–414.CrossRefGoogle Scholar
  33. Kernan A., Thornburg R.W.W., 1989. Auxin levels regulate the expression of the a wound-inducible proteinase inhibitor II-chloramphenicol acetyl transferase gene fusion in vitro and in vivo. Plant Physiol., 91: 73–78.PubMedGoogle Scholar
  34. Koda Y., 1992. The role of jasmonic acid and related compounds in the regulation of plant development. Inter. Rev. Cytol., 135: 155–198.CrossRefGoogle Scholar
  35. Kutchan T.M., 1995. Alkaloid biosynthesis; the basis for metabolic engineering of medicinal plants. Plant Cell, 7: 1059–1070.PubMedCrossRefGoogle Scholar
  36. Ludwig-Muller J., Bendel U., Thermann P., Ruppel M., Epstein E., Hilbergen W., 1993. Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected by Plasmodiophora brassicae Woron. New Phytol., 125: 763–769.CrossRefGoogle Scholar
  37. Ludwig-Muller J., Scubert B., Pieper K., Ihmig S., Hilgenberg W., 1997. Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease. Phytochemistry, 44: 407–414.CrossRefGoogle Scholar
  38. Mason H.S., DeWald D.B., Creelman R., Mullet J.E., 1992. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. Plant Physiol., 98: 859–867.PubMedGoogle Scholar
  39. Mason H.S., Mullet J.E., 1990. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding and jasmonic acid. Plant Cell, 2: 569–579.PubMedCrossRefGoogle Scholar
  40. McManus M. T., Thompson D. S., Merriman C., Lyne L., Osborne D.J., 1998. Transdifferentiation of mature cortical cells to functional abscission cells in bean. Plant Physiol., 116: 891–899.PubMedCrossRefGoogle Scholar
  41. Miyamoto K., Oka M., Ueda J., 1997. Update on the possible mode of action of the jasmonates: Focus on the metabolism of cell wall polysaccharides in relation to growth and development. Physiol. Plant., 100: 631–638.CrossRefGoogle Scholar
  42. Mizusaki S., Tanabe Y., Noguchi M., Tamaki E., 1973. Changes in the activities of ornithine decarboxylase, putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots in relation to nicotine biosynthesis. Plant Cell Physiol., 14: 103–110.Google Scholar
  43. Montague M.J., 1997. Exogenous jasmonic acid abscisic acids act differentially in elongating tissues from oat stem segments. J. Plant Growth Regul., 16: 11–19.CrossRefGoogle Scholar
  44. Murofushi N., Yamane H., Sakagami Y., Imaseki H., Kamiya Y., Iwamura H., Hirai N., Tsuji H., Yokota T., Ueda J., 1999. Plant Hormones. In: Comprehensive Natural Products Chemistry (Editor Miscellaneous Natural Products including Marine-in Chief: Sir Derek Barton, Koji Nakanishi, Executive Editor: Otto Meth-Cohn), Vol. 8, Natural Products, Pheromones, Plant Hormones, and Aspects of Ecology (Volume Editor: Kenji Mori), Elsevier, Amsterdam, pp. 19–136.Google Scholar
  45. Pena-Cortes H., Fisahn J., Willmitzer L., 1995. Signal involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc. Natl. Acad. Sci. USA, 92: 4106–4113.PubMedCrossRefGoogle Scholar
  46. Pena-Cortes H., Sanchez-Serrano J. J., Mertens R., Willmitzer L., Prat S., 1989. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc. Natl. Acad. Sci. USA, 86: 9851–9855.PubMedCrossRefGoogle Scholar
  47. Reinbothe S., Mollenhauer B., Reinbothe S.C., 1994. JIPs and RIPs: The regulation of plant gene expression by jasmonates in responses to environmental cues and pathogens. Plant Cell, 6: 1197–1209.PubMedCrossRefGoogle Scholar
  48. Rojo E., Titarenko E., Leon J., Berger S., Vancanneyt G., Sanchez-Serrano J.J., 1998. Reversible protein phosphorylation regulates jasmonic acid dependent and independent wound signal transduction pathways in Arabidopsis thaliana. Plant J., 12: 153–165.CrossRefGoogle Scholar
  49. Saniewski M., 1995. Methyl jasmonate in relation to ethylene production and other physiological processes in selected horticultural crops. Acta Hortic., 394: 85–98.Google Scholar
  50. Saniewski M., 1997. The role of jasmonates in ethylene biosynthesis. In: A.K. Kanellis, C. Chang, H. Kende, D. Grierson (eds.), Biology and Biotechnology of the Plant Hormone Ethylene, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 39–45.Google Scholar
  51. Saniewski M., Ueda J., Miyamoto K., 1999. Interaction of ethylene with jasmonates in the regulation of some physiological processes in plants. In: A.K. Kanellis, C. Chang, H. Klee, A.B. Bleecker, J.C. Pech, D. Grierson (eds.), Biology and Biotechnology of the Plant Hormone Ethylene II, Kluwer Academic Publishers, Dordrecht, Boston, pp. 173–180.Google Scholar
  52. Saniewski M., Ueda J., Miyamoto K., 2000. Methyl jasmonate induces the formation of secondary abscission zone in stem of Bryophyllum calycinum Salisb. Acta Physiol. Plant., 22: 17–23.Google Scholar
  53. Saniewski M., Utsumoniya M., Miyamoto K., Ueda J., 2001. Transdifferentiation to the secondary abscission induced by methyl jasmonate in Bryophyllum calycinum. Plant Cell Physiol., 42 (supplement): 86.Google Scholar
  54. Sembdner G., Parthier B., 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 569–589.CrossRefGoogle Scholar
  55. Seo S., Sano H., Ohashi Y., 1997. Jasomonic acid in wound signal transduction pathways. Physiol. Plant., 100: 740–745.CrossRefGoogle Scholar
  56. Shoji T., Yamada Y., Hashimoto T., 2000. Jasmonate induction of proteinase N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol., 41: 831–839.PubMedCrossRefGoogle Scholar
  57. Smulders M.J., Horton R.F., 1991. Ethylene promotes elongation growth and auxin promotes radial growth in Ranunculus scleratus petioles. Plant Physiol., 96: 806–811.PubMedGoogle Scholar
  58. Stelmach B.A., Muller A., Weiler E.A., 1999. 12-Oxo-phytodienoic acid and indole-3-acetic acid in jasmonic acid-treated tendril of Bryonia dioica. Phytochemistry, 51: 187–192.CrossRefGoogle Scholar
  59. Theologis A., Huynh T. V., Davis R. W., 1985. Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol., 183: 53–68.PubMedCrossRefGoogle Scholar
  60. Thornburg R.W., Park S., and Li X., 1993. Hormonal regulation of wound inducible proteinase inhibitor II genes. In: Control of plant gene expression, D.P. Verma, (ed.) Boca Raton, FL: CRC Press, pp. 91–101.Google Scholar
  61. Thornburg R.W., and Li X., 1991. Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid. Plant Physiol., 96: 802–805.PubMedGoogle Scholar
  62. Tsurumi S., Asahi Y., 1985. Identification of jasmonic acid in Mimosa pudica and its inhibitory effect on auxin- and light-induced opening of the pulvinules. Physiol. Plant., 64: 207–211.CrossRefGoogle Scholar
  63. Tsurumi S., Asahi Y., Suda S., 1985. IAA-induced opening of excised Mimosa pulvinules. Bot. Mag., Tokyo, 97: 89–97.CrossRefGoogle Scholar
  64. Ueda J., Kato J., 1980. Isolation and identification of a senescence-promoting substances from wormwood (Artemisia absinthium L.). Plant Physiol., 66: 246–249.PubMedCrossRefGoogle Scholar
  65. Ueda J., Miyamoto K., Aoki M., 1994. Jasmonic acid inhibits the IAA-induced elongation of oat coleoptile segments: A possible mechanism involving the metabolism of cell wall polysaccharides. Plant Cell Physiol., 35: 1065–1070.Google Scholar
  66. Ueda J., Miyamoto K., Hashimoto M., 1996. Jasmonates promote abscission in bean petiole explants: Its relationship to the metabolism of cell wall polysaccharides and cellulase activity. J. Plant Growth Regul., 15: 189–195.CrossRefGoogle Scholar
  67. Ueda J., Miyamoto K., Kamisaka S., 1995. Inhibition of the synthesis of cell wall polysaccharides in oat coleoptile segments by jasmonic acid: Relevance to its growth inhibition. J. Plant Growth Regul., 14: 69–76.CrossRefGoogle Scholar
  68. Walling L.L., 2000. The myriad plant responses to herbivores. J. Plant Growth Regul., 19: 195–216.PubMedGoogle Scholar
  69. Weiler E.W., Albrecht T., Groth B., Xia Z.-Q., Luxem M., LiB H., Andert L., Spengler P., 1993. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica, Phytochemistry, 32: 591–600.CrossRefGoogle Scholar
  70. Wightman F., Lighty D. L., 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant., 55: 17–24.CrossRefGoogle Scholar
  71. Yamane H., Takagi H., Abe H., Yokota T., Takahashi N., 1981. Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol., 22: 689–697.Google Scholar

Copyright information

© Department of Plant Physiology 2002

Authors and Affiliations

  • Marian Saniewski
    • 1
  • Junichi Ueda
    • 2
  • Kensuke Miyamoto
    • 2
  1. 1.Research Institute of Pomology and FloricultureSkierniewicePoland
  2. 2.College of Integrated Arts and SciencesOsaka Prefecture UniversitySakai, OsakaJapan

Personalised recommendations