Acta Physiologiae Plantarum

, Volume 23, Issue 3, pp 363–374 | Cite as

Plant selectable markers and reporter genes

  • Alicja Ziemienowicz


In recent years, considerable progress has been made in genetic engineering of various plant species, both agronomically important crops as well as model plants. The bases of this progress were, in addition to efficient transformation methods, the design of appropriate signals regulating transgene expression and the use of selection marker or reporter genes. In most cases, a gene of interest is introduced into plants in association with a selectable marker gene (nptII, hpt, acc3, aadA, bar, pat). Recovery of a transgenic plant is, therefore, facilitated by selection of putative transformants on a medium containing a selection agent, such as antibiotic (nptII, hpt, acc3, aadA), antimetabolite (dhfr), herbicide (bar, pat), etc. On the other hand, use of reporter genes (cat, lacZ, uidA, luc, gfp) allows not only to distinguish transformed and non-transformed plants, but first of all to study regulation of different cellular processes. In particular, by employing vital markers (Luc, GFP) gene expression, protein localization and intracellular protein traffic can be now observed in situ, without the need of destroying plant.

Key words

plants/reporter genes/selectable markers/transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alton N., Vapnek D. 1979. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature, 282: 864–869.PubMedCrossRefGoogle Scholar
  2. Angenon G., Dillen W., van Montagu M. 1994. Antibiotic resistance markers for plant transformation. In: Plant Molecular Biology Manual, eds. Gelvin S. B. and Schilperoot R. A., Kluwer Publisher, C1: 1–13.Google Scholar
  3. Baulcombe D.C., Chapman S., Santa Cruz S. 1995. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J., 7: 1045–1053.PubMedCrossRefGoogle Scholar
  4. Becker D., Brettschneider R., Lörz H. 1994. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J., 5: 299–307.PubMedCrossRefGoogle Scholar
  5. Bevan M.W., Flavell R.B., Chilton M.D. 1992. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation, Biotechnology, 24: 367–370.PubMedGoogle Scholar
  6. Bhalla P.L., Dalling M.J. 1984. Optimal conditions for â-galactosidase activity expressed in plant cells. Plant Physiol., 76: 92–95.PubMedGoogle Scholar
  7. Boevink P., Santa Cruz S., Hawes C., Harris N., Oparka K.J. 1996. Virus-mediated delivery of the green fluorescent protein to the endoplasmic reticulum of plant cells. Plant J., 10: 935–941.CrossRefGoogle Scholar
  8. Brar G.S., Cohen B.A., Vick C.L., Johnson G.W. 1994. Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J., 5: 745–752.CrossRefGoogle Scholar
  9. Cabanes-Baston E., Day A.G., Lichtenstein C.P. 1989. A sensitive and simple assay for neomycin phosphotransferase II activity in transgenic tissue. Gene, 77: 169–176.CrossRefGoogle Scholar
  10. Carrer H., Staub J.M., Maliga P. 1991. Gentamycin resistance in Nicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. Plant Mol. Biol., 17: 301–303.PubMedCrossRefGoogle Scholar
  11. Casadaban M.J., Martinez-Arias A., Shapira S.K., Chou J. 1983. â-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol., 100: 293–308.PubMedGoogle Scholar
  12. Chalfie M., Tu Y., Euskirchen G., Ward W., Prasher D. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802–805.PubMedCrossRefGoogle Scholar
  13. Chen W.P., Gu X., Liang G.H., Muthukrishnan S., Chen P.D., Liu D.J., Gill B.S. 1998. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theor. Appl. Genet., 97: 1296–1306.CrossRefGoogle Scholar
  14. Cody C.W., Prasher D.C., Westler W.M., Prendergast F.G., Ward W.W. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry, 32: 1212–1218.PubMedCrossRefGoogle Scholar
  15. Crameri A., Whitehorn E.A., Tate E., Stemmer W.P.C. 1996. improved green fluorescence protein by molecular evolution using DNA shuffling. Nature Biotech., 14: 315–319.CrossRefGoogle Scholar
  16. Crossland L., Jayne S., Cang Y.F., Reed J., Nahory J., Armour S., Stein J., Grater T., Miner D., Walker L., Wong J. 1994. Production of transgenic wheat by particle bombardment using methotrexate as a selection agent. J. Cell Biochem. Abstr. Suppl., 18A: 100.Google Scholar
  17. Datta S.K., Peterhans A., Datta K., Potrukus I. 1990 Genetically engineered fertile Indica-rice recovered from protoplasts. Biotechnology, 8: 636–740.Google Scholar
  18. Datta S.K., Datta K., Soltanifar N., Donn G., Potrykus I. 1992. Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol. Biol., 20: 619–629.PubMedCrossRefGoogle Scholar
  19. Delagrave S., Hawtin R.E., Silva C.M., Yang M.M., Youvan D.C. 1995. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology, 13: 151–154.PubMedCrossRefGoogle Scholar
  20. De Wet J.R., Wood V., Helinski D.R., DeLuca M. 1985. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. USA, 82: 7870–7873.PubMedCrossRefGoogle Scholar
  21. D’Halluin K., De Block M., Denecke J., Janssen J., Leemans J., Reynaerts A., Botterman J. 1992. The bar gene as selectable marker in plant engineering. Methods Enzymol., 216: 415–426.PubMedGoogle Scholar
  22. Escher A., O’Kane D.J., Schalay A.A. 1989. Bacterial luciferase áâ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc. Natl. Acad. Sci. USA, 86: 6528–6532.PubMedCrossRefGoogle Scholar
  23. Farrell L.B., Beachy R.N. 1990. Manipulation of â-glucuronidase for use as a reporter in vacuolar targeting studies. Plant Mol. Biol., 15: 821–825.PubMedCrossRefGoogle Scholar
  24. Fuchs A.L. Ream J.E., Hammond B.G., Naylor M.W., Leimgruber R.M., Berberich S.A. 1993. Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Biotechnology, 11: 1543–1547.PubMedGoogle Scholar
  25. Gatignol A., Durand H., Tiraby G. 1988. Bleomycin resistance conferred by a drug-binding protein. FEBS Lett., 230: 171–175.PubMedCrossRefGoogle Scholar
  26. Gould J.H., Smith R.H. 1989. A non-destructive assay for GUS in the media of plant tissue culture. Plant Mol. Biol. Rep., 7: 209–216.Google Scholar
  27. Grebenok R.J., Lampert G.M., Galbraith D.W. 1997. Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J., 12: 685–696.CrossRefGoogle Scholar
  28. Hastings J.W., Boldwin T.O., Nicoli M.Z. 1978. Bacterial luciferase: assay, purification and properties. Methods Enzymol., 57: 135–172.Google Scholar
  29. Hayford M.B., Medford J.I., Hoffman N.L., Rogers S.G., Klee H.J. 1988. Development of a plant transformation selection system based on expression genes encoding gentamicin acetyltransferases. Plant Physiol., 86: 1216–1222.PubMedGoogle Scholar
  30. Hedtke B., Meixner M., Gillandt S., Richter E., Börner T., Weihe A. 1999. Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J., 17: 557–561.PubMedCrossRefGoogle Scholar
  31. Heim R., Tsien R.Y. 1995. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol., 6: 178–182.CrossRefGoogle Scholar
  32. Herrera-Estrella L., De Block M., Messens E., Hernalsteens P., Van Montagu M., Schell J. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J., 2: 987–997.PubMedGoogle Scholar
  33. Herrera-Estrella L., Depicker A., Van Montagu M., Schell J. 1983. Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature, 303: 209–213.CrossRefGoogle Scholar
  34. Herrera-Estrella L., Leon P., Olsson O., Teeri T.H. 1994. Reporter genes for plants. In: Plant Molecular Biology Manual, eds. Gelvin S. B. and Schilperoot R. A., Kluwer Publisher, C2: 1–32.Google Scholar
  35. Jefferson R.A., Burgess S.M., Hirsh D. 1986. â-Glucuronidase from Escherichia coli as a gene fusion marker. Proc. Natl. Acad. Sci. USA, 83: 8447–8451.PubMedCrossRefGoogle Scholar
  36. Jefferson R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol., Rep., 5: 387–391.Google Scholar
  37. Jefferson R.A., Kavanagh T.A., Bevan M.V. 1987. GUS fusions: â-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6: 3901–3910.PubMedGoogle Scholar
  38. Kalnins A., Otto K., Rüther U., Müller-Hill B. 1983. Sequence of the lacZ gene Escherichia coli. EMBO J., 2: 593–597.PubMedGoogle Scholar
  39. Kerr A., 1992. The genus Agrobacterium. In: The Prokaryotes, Balows, Trüper H.G., Dworkin M., Herder W., Schleifer K.H. (eds.), Springer-Verlag, New York: 2214–2235.Google Scholar
  40. Koncz C., Olsson O., Langridge H.R., Schell J., Schalay A.A. 1987. Expression and assembly of functional bacterial luciferase in plants. Proc. Natl. Acad. Sci. USA, 84: 131–136.PubMedCrossRefGoogle Scholar
  41. Kost B., Schnorf M., Potrykus I., Neuhaus G. 1995. Non-destructive detection of firefly luciferase (LUC) activity in single plant cells using a colled, slow scan CCD camera and an optimized assay. Plant J., 8: 125–134.CrossRefGoogle Scholar
  42. Köhler R.H., Zipfel W.R., Webb W.W., Hanson M.R. 1997. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J., 11: 613–621.PubMedCrossRefGoogle Scholar
  43. Lloyd A.M., Barnason A.R., Rogers S.G., Byrne M.C., Fraley R.T., Horsch R.B. 1986. Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science, 234: 464–466.CrossRefPubMedGoogle Scholar
  44. Maliga P., Svab Z., Harper E.C., Jones J.D.G. 1988. Improved expression of streptomycin resistance in plants due to a deletion of the streptomycin phosphotransferase coding sequence. Mol. Gen. Genet., 214: 456–459.PubMedCrossRefGoogle Scholar
  45. Martin T., Wöhner R.V., Hummel S., Willmitzer L., Frommer W.B. 1992a. The GUS reporter system as a tool to study plant gene expression. In: GUS Protocols (S.R. Gallagher, ed.), Academic Press, San Diego: 23–43.Google Scholar
  46. Martin T., Schmidt R., Altmann T., Frommer W.B. 1992b. Non-destructive assay systems for detection of â-glucuronidase activity in higher plants. Plant Mol. Biol. Rep., 10: 37–46.Google Scholar
  47. Masterson R.V., Furtek D.B., Grevelding C., Schell J. 1989. A maize Ds transposable element containing a dihydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol. Gen. Genet., 219: 461–468.CrossRefGoogle Scholar
  48. Matsumoto S., Takebe I., Machida Y. 1988. Escherichia coli lacZ gene as a biochemical and histochemical marker in plant cell. Gene, 66: 19–29.PubMedCrossRefGoogle Scholar
  49. McCabe D.E., Matrinell B.J. 1993. Transformation of elite cotton cultivars via particle bombardment of meristems. Biotechnology, 11: 597–605.Google Scholar
  50. Millar A.J., Short S.R., Hiratsuka K., Chua N.H., Kay S.A. 1992. Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol. Biol. Rep., 10: 324–330.CrossRefGoogle Scholar
  51. Miller J.H. 1972. Detection of â-galactosidase in plants. In: Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York: 77–95.Google Scholar
  52. Misteli T., Spector D.L. 1997. Applications of the green fluorescent protein in cell biology and biotechnology. Nature Biotechnol., 15: 961–964.CrossRefGoogle Scholar
  53. Nagel R.J., Mamers J.M., Birch R.G. 1992. Evaluation of an ELISA assay for rapid detection and quantification of neomycin phosphotransferase II in transgenic plants. Plant Mol. Biol. Rep., 10: 263–275.Google Scholar
  54. Naleway J.J. 1992. Histochemical, spectrophotometric, and fluorometric GUS substrates, GUS Protocols (S.R. Gallagher, ed.), Academic Press, San Diego: 61–76.Google Scholar
  55. Niedz R.P., Sussman M.R., Satterlee J.S. 1995. Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep., 14: 403–406.CrossRefGoogle Scholar
  56. Olsson O., Nilsson O., Koncz C. 1990. Novel monomeric luciferase enzymes as tools to study plant gene regulation in vivo. J. Biolumin. Chemilumin., 5: 79–87.PubMedCrossRefGoogle Scholar
  57. Ow D.W., Wood K.V., DeLuca M., De Wet J.R., Helinski D.R., Howell S.H. 1985. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants, Science, 234: 856–859.CrossRefGoogle Scholar
  58. Pang S.-Z., DeBoer D.L., Wan Y., Ye G., Layton J.G., Neher M.K., Armstrong C.L., Fry J.E., Hinchee M.A.W., Fromm M. 1996. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol., 112: 893–900.PubMedCrossRefGoogle Scholar
  59. Peng J., Wen F., Hodges R.G. 1993. A rapid method for quantitative assay of both neomycin phosphotransferase II and â-glucuronidase activities in transgenic plants. Plant Mol. Biol. Rep., 11: 38–43.Google Scholar
  60. Perez P., Tiraby G., Kallerhoff J., Perret J. 1989. Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol. Biol. 13: 365–373.PubMedCrossRefGoogle Scholar
  61. Perl A., Galili S., Shaul O., Ben-Tzvi I., Galili G. 1993. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Biotechnology, 11: 715–718.CrossRefGoogle Scholar
  62. Prasher D.C., Eckenrode V.K, Ward W.W., Prendergst F.G., Cormier M.J. 1992. Primary structure of the Aequorea victoria green fluorescent protein. Gene, 111: 229–233.PubMedCrossRefGoogle Scholar
  63. Prasher D.C. 1995. Using GFP to see the light. Trends Genet., 11: 320–323.PubMedCrossRefGoogle Scholar
  64. Reiss B., Sprengel R., Schaller H. 1984. Protein fusions with the kanamycin resistance gene from transposon Tn5. EMBO J., 3: 3317–3322.PubMedGoogle Scholar
  65. Savka M.A., Farrand S.K. 1992. Mannityl opine accumulation and exudation by transgenic tobacco. Plant Physiol., 98: 784–789.PubMedCrossRefGoogle Scholar
  66. Schäffner A.R., Sheen J. 1991. Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters. Plant Cell., 3: 997–1012.PubMedCrossRefGoogle Scholar
  67. Schlenstedt G., Saavedra C., Loeb J.D., Cole C.N., Silver P.A. 1995. The GTP-bound form of the yeast Ran/TC4 homologue blocks nuclear protein import and appearance of poly(A) RNA in the cytoplasm. Proc. Natl. Acad. Sci. USA, 92: 225–229.PubMedCrossRefGoogle Scholar
  68. Sengupta P., Colbert A.B., Bargmann C.I. 1994. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell, 79: 971–980.PubMedCrossRefGoogle Scholar
  69. Sheen J., Hwang S., Niwa Y., Kobayashi H., Galbraith D.W. 1995. Green-fluorescent protein as a new vital marker in plant cells. Plant J., 8: 777–784.PubMedCrossRefGoogle Scholar
  70. Simonsen C.C., Levinson A.D. 1983. Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc. Natl. Acad. Sci. USA, 80:2495–2499.PubMedCrossRefGoogle Scholar
  71. Svab Z., Maliga P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA, 90: 913–917.PubMedCrossRefGoogle Scholar
  72. Svab Z., Harper E.C., Jones J.D.G., Maliga P. 1990. Aminoglycoside-3′‘-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol. Biol., 14: 197–205.PubMedCrossRefGoogle Scholar
  73. Terri T.H., Lehväslaiho H., Franck M., Uotila J., Heino P., Palva E.T., Van Montagu M., Herrera-Estrella L. 1989. Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. EMBO J., 8: 343–350.Google Scholar
  74. Vain P., Worland B., Kohli A., Snape J.W., Christou P. 1998. The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor. Appl. Genet., 96: 164–169.CrossRefGoogle Scholar
  75. Waldron C., Murphy E.B., Roberts J.L., Gustafson G.D., Armour S.L., Malcolm S.K. 1985. Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol. Biol., 5: 103–108.CrossRefGoogle Scholar
  76. Wang Z.-Y., Takamizo T., Iglesias V.A., Osusky M., Nagel J., Potrykus I., Spangenberg G. 1992. Transgenic plants of tall fescue (Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts. Biotechnology, 10: 691–696.PubMedCrossRefGoogle Scholar
  77. Wang S and Haselrigg T. 1994. Implications for bcd m RNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature, 369: 400–403.PubMedCrossRefGoogle Scholar
  78. Wohlleben W., Arnold W., Broer I., Hillemann D., Strauch E., Pühler A. 1988. Nucleotide sequence of the phosphinotricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene, 70: 25–31.PubMedCrossRefGoogle Scholar
  79. Wood K.V. 1991. Recent advances and prospects for use of beetle luciferase as genetic reporters. In: Bioluminescence & chemiluminescence: current status, P. Stanlay and L. Cricka (eds), Chichester: John Wiley & Sons Ltd., p. 543–557.Google Scholar
  80. Yenofsky R.L., Fine M., Pellow J.W. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA, 87: 3435–3439.PubMedCrossRefGoogle Scholar
  81. Zhu J., Oger P.M., Schrammeijer B., Hooykaas P.J.J., Farrand S.K., Winans S.C. 2000. The bases of crown gall tumorigenesis. J. Bacteriol., 182: 3885–3895.PubMedCrossRefGoogle Scholar

Copyright information

© Department of Plant Physiology 2001

Authors and Affiliations

  • Alicja Ziemienowicz
    • 1
  1. 1.Plant Protection and Biotechnology Laboratory, Department of Biotechnology, Intercollegiate Faculty of Biotechnology UG-AMGUniversity of GdańskGdańskPoland

Personalised recommendations