Acta Physiologiae Plantarum

, Volume 23, Issue 3, pp 279–284

Selenomethionine as a dormancy-breaking agent in seeds of Stylosanthes humilis

  • R. S. Barros
  • A. W. de Paula Freitas
Article

Abstract

Physiological dormancy of scarified seeds of Townsville stylo (Stylosanthes humilis H.B.K.) was released by seleno-L-methionine (SeM), but not by L-methionine. This regulating effect was impaired by inhibitors of ethylene biosynthesis and action; in the first case SeM action was restored by 2-chloroethylphosphonic acid (CEPA) and 1-aminocyclopropane-1-carboxylic acid (ACC). The Se-aminoacid proved to be toxic in a time-dependent manner to seedling growth, inhibiting primarily the hypocotyl expansion. This toxicity is suggested to trigger ethylene biosynthesis, which would promote germination of dormant seeds.

Key words

ethylene growth regulators methionine germination selenium Townsville stylo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard L.A.T., Buchwald T. 1971. A viability test for seeds of Townsville stylo using thiourea. Aust. J. Exp. Agr. Anim. Husb., 11: 207–210.CrossRefGoogle Scholar
  2. Burin M.E., Barros R.S., Rena A.B. 1987. Chemical regulation of endogenous dormancy in seeds of Stylosanthes humilis H.B.K. Turrialba, 37: 281–285.Google Scholar
  3. Burnell J.N. 1981. Selenium metabolism in Neptunia amplexicaulis. Plant Physiol., 57: 316–324.CrossRefGoogle Scholar
  4. Delatorre C.A., Barros R.S. 1996. Germination of dormant seeds of Stylosanthes humilis as related to heavy metal ions. Biol. Plant., 38: 269–274.Google Scholar
  5. Eustice D.C., Kull F.J., Shrift A. 1981a. Selenium toxicity: aminoacylation and peptide bond formation with selenomethionine. Plant Physiol., 67: 1054–1058.PubMedGoogle Scholar
  6. Eustice D.C., Kull F.J., Shrift A. 1981b. In vitro incorporation of selenomethionine into protein by Astragalus polysomes. Plant Physiol., 67: 1059–1060.PubMedGoogle Scholar
  7. Holm A.McR. 1972. The effect of high temperature pretreatments on germination of Townsville stylo seed material. Aust. J. Exp. Agri. Anim. Husb., 13: 190–192.CrossRefGoogle Scholar
  8. Jones J.F., Kende H. 1979. Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L. Planta, 146: 649–656.CrossRefGoogle Scholar
  9. Kende H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 283–307.CrossRefGoogle Scholar
  10. Konze J.R., Kende H. 1979. Interactions of methionine adenosyltransferase and ethylene-generating systems. Plant Physiol., 63: 507–510.PubMedGoogle Scholar
  11. Konze J.R., Schilling N., Kende H. 1978. Enhancement of ethylene formation by selenoaminoacids. Plant Physiol., 62: 397–401.PubMedGoogle Scholar
  12. Mattoo A.K., Baker J.E., Moline H.E. 1986. Induction by copper ions of ethylene production in Spirodela oligorrhiza: evidence for a pathway independent of 1-aminocyclopropane-1-carboxylic acid. J. Plant Physiol., 123: 193–202.Google Scholar
  13. Mattoo A.K., Mehta R.A., Baker J.E. 1992. Copper-induced ethylene biosynthesis in terrestrial (Nicotiana tabacum) and aquatic (Spirodela oligorrhiza) higher plants. Phytochemistry, 31: 405–409.CrossRefGoogle Scholar
  14. Miller E.R., Lei X., Ullrey D.E. 1991. Trace elements in animal nutrition. In (eds): Mortvedt J.J., Cox F.R., Schuman L.M., Welch R.M. Micronutrients in Agriculture. Pp. 593–662. N4, Book Series, Soil Science Society of America, Madison.Google Scholar
  15. Neuhierl B., Böck A. 1996. On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur. J. Biochem., 239: 235–238.PubMedCrossRefGoogle Scholar
  16. Ouannès C., Wilson T. 1968. Quenching of singlet oxygen by tertiary aliphatic amines. J. Amer. Chem. Soc., 90: 6527–6528.CrossRefGoogle Scholar
  17. Reid M.S., Paul J.L., Farhoomand M.B., Kofranek A.M., Staby G.L. 1980. Pulse treatments with the silver thiosulfate complex extend the vase life of cut carnations. J. Amer. Soc. Hort. Sci., 105: 25–27.Google Scholar
  18. Scott A.J., Knott M. 1974. A cluster analysis for grouping means in the analysis of variance. Biometrics, 30: 507–512.CrossRefGoogle Scholar
  19. Tappel A.L. 1965. Free-radical lipid peroxidation damage and its inhibition by vitamin E and selenium. Fed. Proc., 24: 73–78.PubMedGoogle Scholar
  20. Vieira H.D., Barros R.S. 1994. Responses of seed of Stylosanthes humilis to germination regulators. Physiol. Plant., 92: 17–20.CrossRefGoogle Scholar
  21. Welch R.M., Allaway W.H., House W.A. Kubota J. 1991. Geographic distribution of trace element problems. In (eds): Mortvedt J.J., Cox F.R., Schuman L.M., Welch R.M. Micronutrients in Agriculture. Pp. 31–57. N 4, Book Series, Soil Science Society of America, Madison.Google Scholar

Copyright information

© Department of Plant Physiology 2001

Authors and Affiliations

  • R. S. Barros
    • 1
  • A. W. de Paula Freitas
    • 1
  1. 1.Departmento de Biologia VegetalUniversidade Federal de ViçosaViçosa, MGBrasil

Personalised recommendations