Journal of Acupuncture and Tuina Science

, Volume 15, Issue 4, pp 230–236 | Cite as

Low-frequency fluctuation amplitude analysis of resting-state fMRI for functional brain response differences between acupuncture and moxibustion at Zusanli (ST 36) in patient with functional dyspepsia

  • Mai-lan Liu (刘迈兰)
  • Can Liu (刘灿)
  • Jing Wu (吴静)
  • Bo Li (李波)
  • Zhi-gen Zhou (周芝根)
  • Pei-shan Dai (戴培山)
  • Jie Yu (郁洁)
  • Xiao-rong Chang (常小荣)
Special Topic for 973 Program



To compare and analyze functional brain response characteristics by applying acupuncture or moxibustion to Zusanli (ST 36) in patients with functional dyspepsia (FD) and investigate the differences of central action mechanism resulting from acupuncture or moxibustion.


A total of eligible 24 FD cases were divided into two blood-oxygen-level dependent (BOLD) sequences for functional magnetic resonance imaging (fMRI) scan. The amplitude of low frequency fluctuation (ALFF) analyses were conducted on the data of location phase, structure phase, resting state before acupuncture/moxibustion, working state during acupuncture/moxibustion and resting state after acupuncture/moxibustion using Data Processing Assistant for Resting-State fMRI (DPARSF) software.


Acupuncture and moxibustion produced significant differences in functional brain response. The working state during acupuncture/moxibustion mainly decreased ALFF values in the right supramarginal gyrus, right superior parietal lobule, right frontal gyrus, upper right occipital lobe, right precuneus and right cingulate gyrus. At the same time, it increased ALFF values in the left cerebellum, right caudate nucleus, right cerebellum and left inferior gyrus. The differences during the resting state after acupuncture/moxibustion were significantly smaller than the working state in intensity and size. It mainly resulted in decrease in ALFF values in the right postcentral gyrus and right supramarginal gyrus and increase in ALFF values in the left precuneus, orbital part of inferior frontal gyrus and right cerebellar peduncles.


Needling and moxibustion at Zusanli (ST 36) can produce significant differences in immediate functional brain response.


Acupuncture Therapy Moxibustion Therapy Moxa Stick Moxibustion Point, Zusanli (ST 36) Research on Acupoints Dyspepsia Magnetic Resonance Imaging 

静息态fMRI 低频振幅评价针刺与艾灸功能性消化不良患者足三里脑功能响应差异



比较分析针刺与艾灸足三里穴治疗功能性消化不良(FD)的脑功能响应特征, 探索针刺与艾灸中枢作 用机制的差异。


选取符合条件的FD 患者24 例, 分针刺、艾灸两个BOLD 序列进行功能磁共振成像(fMRI) 扫描, 每个序列分为定位相、结构相、针刺/艾灸前静息态、针刺时/艾灸时任务态、针刺/艾灸后静息态, 采集数 据运用DPARSF 软件进行低频振幅(ALFF)分析。


针刺与艾灸时的脑功能响应具有明显差异, 针刺时/艾灸时 任务态比较主要引起了右缘上回、右顶上小叶、右额中回、右枕叶上部、右楔前叶、右扣带回中部等脑区ALFF 值降低, 以及左小脑、右尾状回、右小脑、左小脑脚、左颞下回等脑区ALFF 值的升高; 针刺/艾灸后静息态的比 较差异在强度和区域大小上均明显小于任务态, 主要引起了右中央后回、右缘上回脑区ALFF 值的降低,以及左楔 前叶、左额下回眶部、右小脑脚脑区ALFF 值的升高。


针刺与艾灸FD 患者足三穴的即时脑功能响应区域 有明显差异。


针刺疗法 灸法 艾条灸 穴, 足三里 穴位研究 消化不良 磁共振成像 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Basic Research Program of China (973 Program, 国家重点基础研究发展 计划, No. 2015CB554502); Project of China Postdoctoral Science Foundation ( 中国博士后面上基金课题, No. 2015M580689); Key Project of Hunan Province Administration of Traditional Chinese Medicine (湖南省中 医药管理局重点项目, No. 201409); Fund Project of Hunan Province Education Office (湖南省教育厅项目资助, No. 14C0856). Key Subject of Acupuncture Science of Hunan Province (湖南省针灸重点学科).


  1. [1]
    Kumar A, Pate J, Sawant P. Epidemiology of functional dyspepsia. J Assoc Physicians India, 2012, 60 (Suppl): 9–12.PubMedGoogle Scholar
  2. [2]
    Li ZJ, Zeng F, Yang Y, Zhang DH, Chen Y, Sun JB, Qin W, Yang J, Liang FR. Cerebral responses to puncturing at ST 36 after acupuncture treatment in patients with functional dyspepsia. Shijie Huaren Xiaohua Zazhi, 2013, 21(19): 1882–1887.Google Scholar
  3. [3]
    Ma TT, Yu SY, Li Y, Liang FR, Tian XP, Zheng H, Yan J, Sun GJ, Chang XR, Zhao L, Wu X, Zeng F. Randomised clinical trial: an assessment of acupuncture on specific meridian or specific acupoint vs. sham acupuncture for treating functional dyspepsia. Aliment Pharmacol Ther, 2012, 35(5): 552–561.CrossRefPubMedGoogle Scholar
  4. [4]
    Peng SF, Yang JY, Shi ZH. Electroacupuncture improves gastric motility, autonomic nerve activity and psychological state in patients with functional dyspepsia. Shijie Huaren Xiaohua Zazhi, 2008, 16(36): 4105–4109.Google Scholar
  5. [5]
    Drossman DA. The functional gastrointestinal disorders and the Rome ? process. Gastroenterology, 2006, 130(5): 1377–1390.CrossRefPubMedGoogle Scholar
  6. [6]
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Nomenclature and Location of Acupuncture Points (GB/T 12346-2006). Beijing: Standards Press of China, 2006.Google Scholar
  7. [7]
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature, 2001, 412(6843): 150–157.CrossRefPubMedGoogle Scholar
  8. [8]
    Mantini D, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA, 2007, 104(32): 13170–13175.CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Chen RJ, Wang CJ. Clinical research progress of functional dyspepsia. Shiyong Zhongyi Neike Zazhi, 2013, 27(4): 150–152.Google Scholar
  10. [10]
    Liu ML, Liang FR, Zeng F, Tang Y, Lan L, Song WZ. Cortical-limbic regions modulate depression and anxiety factors in functional dyspepsia: a PET-CT study. Ann Nucl Med, 2012, 26(1): 35–40.CrossRefPubMedGoogle Scholar
  11. [11]
    Chen YW. Regional Brain Activity of Functional Dyspepsia Epigastric Pain Syndrome and Its Influential Factors: a Brain fMRI Study. Beijing: Doctor Thesis of Peking Union Medical College, 2012.Google Scholar
  12. [12]
    Wen HX. The Study of Functional Dyspepsia based on Amplitude of Low Frequency Fluctuation and Functional Connectivity. Xi’an: Master Thesis of Xidian University, 2014.Google Scholar
  13. [13]
    Critchley HD, Mathias CJ, Dolan RJ. Neuroanatomical basis for first-and second-order representations of bodily states. Nat Neurosci, 2001, 4(2): 207–212.CrossRefPubMedGoogle Scholar
  14. [14]
    Vandenbergh J, Dupont P, Fischler B, Bormans G, Persoons P, Janssens J, Tack J. Regional brain activation during proximal stomach distention in humans: a positron emission tomography study. Gastroenterology, 2005, 128(3): 564–573.CrossRefPubMedGoogle Scholar
  15. [15]
    Hu W, Zhang W, Yang J, Peng SF, Yang JY, Shi ZH, Ma J, Liu HB. Effect of acupuncture at Zusanli on fMRI features and serum gastrin levels of patients with functional dyspepsia. Wuhan Daxue Xuebao (Yixue Ban), 2014, 35(5): 740–743.Google Scholar
  16. [16]
    Larsson MB, Tillisch K, Craig AD, Engström M, Labus J, Naliboff B, Lundberg P, Ström M, Mayer EA, Walter SA. Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome. Gastroenterology, 2012, 142(3): 463–472.CrossRefPubMedGoogle Scholar
  17. [17]
    Zeng F, Qin W, Liang F, Liu J, Tang Y, Liu X, Yuan K, Yu S, Song W, Liu M, Lan L, Gao X, Liu Y, Tian J. Abnormal resting brain activity in patients with functional dyspepsia is related to symptom severity. Gastroenterology, 2011, 141(2): 499–506.CrossRefPubMedGoogle Scholar
  18. [18]
    Ren QY, Zhang C, Huang YX, Wang JJ. Effect of acupuncture at Zusanli on gastric emptying and the changes of related hormone levels in patients with functional dyspepsia. Shanxi Yike Daxue Xuebao, 2010, 41(9): 819–821.Google Scholar
  19. [19]
    Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp, 2001, 13(2): 55–73.CrossRefPubMedGoogle Scholar
  20. [20]
    Zeng F, Song WZ, Liu XG, Xie HJ, Tang Y, Shan BC, Liu ZH, Yu SG, Liang FR. Brain areas involved in acupuncture treatment on functional dyspepsia patients: a PET-CT study. Neurosci Lett, 2009, 456(1): 6–10.CrossRefPubMedGoogle Scholar
  21. [21]
    Desouza DD, Moayedi M, Chen DQ, Davis KD, Hodaie M. Sensorimotor and pain modulation brain abnormalities in trigeminal neuralgia: a paroxysmal, sensory-triggered neuropathic pain. PLoS One, 2013, 8(6): e66340.CrossRefPubMedPubMedCentralGoogle Scholar
  22. [22]
    Holstege G, Bandler R, Saper CB. The emotional motor system. Prog Brain Res, 1996, 107: 3–6.CrossRefPubMedGoogle Scholar
  23. [23]
    Van Oudenhove L, Demyttenaere K, Tack J, Aziz Q. Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol, 2004, 18(4): 663–680.CrossRefPubMedGoogle Scholar

Copyright information

© Shanghai Research Institute of Acupuncture and Meridian and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mai-lan Liu (刘迈兰)
    • 1
  • Can Liu (刘灿)
    • 1
  • Jing Wu (吴静)
    • 2
  • Bo Li (李波)
    • 3
  • Zhi-gen Zhou (周芝根)
    • 1
  • Pei-shan Dai (戴培山)
    • 2
  • Jie Yu (郁洁)
    • 1
  • Xiao-rong Chang (常小荣)
    • 1
  1. 1.School of Acupuncture, Moxibustion & TuinaHunan University of Chinese MedicineChangshaChina
  2. 2.School of Information Science and EngineeringCentral South UniversityChangshaChina
  3. 3.Radiology Departmentthe First Hospital of Hunan University of Chinese MedicineChangshaChina

Personalised recommendations