Advertisement

Douleur et Analgésie

, Volume 30, Issue 4, pp 185–191 | Cite as

Toxine botulinique et douleurs neuropathiques

  • N. Attal
Mise Au Point / Update
  • 77 Downloads

Résumé

La toxine botulique de type A est une neurotoxine puissante, largement utilisée pour le traitement des hyperactivités musculaires telles que la dystonie et la spasticité. Plusieurs études cliniques récentes ont indiqué son intérêt par voie sous-cutanée ou intradermique dans les douleurs neuropathiques et la névralgie faciale essentielle. Cette revue fait le point sur l’efficacité, la sécurité d’emploi et les mécanismes potentiels d’action de la toxine botulinique de type A dans les douleurs neuropathiques périphériques ou centrales, ainsi que dans la névralgie faciale essentielle.

Mots clés

Toxine botulinique Douleur neuropathique Névralgie faciale Essai contrôlé randomisé 

Botulinum Toxin and Neuropathic Pain

Abstract

Botulinum toxin type A is a potent neurotoxin which is widely used in the treatment of conditions involving muscular hyperactivity, such as dystonia and spasticity. Several recent clinical trials have indicated its beneficial impact, given subcutaneously or intradermally, on neuropathic pain and essential facial neuralgia. This review highlights the efficacy, safety of use and the potential mechanisms of action of botulinum toxin type A in peripheral or central neuropathic pain, and in essential facial neuralgia

Keywords

Botulinum toxin Neuropathic pain Facial neuralgia Randomised controlled trial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Ward AB, Molenaers G, Colosimo C, Berardelli A (2006) Clinical value of botulinum toxin in neurological indications. Eur J Neurol. 13:20–6CrossRefPubMedGoogle Scholar
  2. 2.
    Colosimo C, Tiple D, Berardelli A (2012) Efficacy and safety of long-term botulinum toxin treatment in craniocervical dystonia: a systematic review. Neurotox Res 22:265–73CrossRefPubMedGoogle Scholar
  3. 3.
    Aoki KR (2005) Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology 26:785–93CrossRefPubMedGoogle Scholar
  4. 4.
    Finnerup NB, Haroutounian S, Kamerman P, et al (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599–606CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bouhassira D, Lanteri-Minet M, Attal N, et al (2008) Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136:380–7CrossRefPubMedGoogle Scholar
  6. 6.
    Attal N, Lanteri-Minet M, Laurent B, et al (2011) The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain 152:2836–43CrossRefPubMedGoogle Scholar
  7. 7.
    Finnerup NB, Attal N, Haroutounian S, et al (2015) Pharmacotherapy for neuropathic pain in adults: systematic review, meta-analysis and NeuPSIG recommendations. Lancet Neurol 14:162–73CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ranoux D, Attal N, Morain F, et al (2008) Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain: a double blind placebo controlled study. Ann Neurol 64:274–83CrossRefPubMedGoogle Scholar
  9. 9.
    Yuan RY, Sheu JJ, Yu JM, et al (2009) Botulinum toxin for diabetic neuropathic pain: a randomized double-blind crossover trial. Neurology 72:1473–78CrossRefPubMedGoogle Scholar
  10. 10.
    Xiao L, Mackey S, Hui H, et al (2010) Subcutaneous injection of botulinum toxin A is beneficial in postherpetic neuralgia. Pain Med 11:1827–33CrossRefPubMedGoogle Scholar
  11. 11.
    Apalla Z, Sotiriou E, Lallas A, et al (2013) Botulinum toxin A in postherpetic neuralgia: a parallel, randomized, double-blind, single-sose, placebo-controlled trial. Clin J Pain 29:857–64CrossRefPubMedGoogle Scholar
  12. 12.
    Attal N, de Andrade DC, Adam F, et al (2016) Efficacy and safety of repeated injections of botulinum toxin a in peripheral neuropathic pain and predictors of treatment response: a randomised double blind placebo controlled study. Lancet Neurol 15:555–65CrossRefPubMedGoogle Scholar
  13. 13.
    Han ZA, Song DH, Oh HM, Chung ME (2016) Botulinum toxin type A for neuropathic pain in patients with spinal cord injury. Ann Neurol 79:569–78CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu CJ, Lian YJ, Zheng YK, et al (2012) Botulinum toxin type A for the treatment of trigeminal neuralgia: results from a randomized, double-blind, placebo-controlled trial. Cephalalgia 32:443–50CrossRefPubMedGoogle Scholar
  15. 15.
    Zúñiga C, Piedimonte F, Díaz S, Micheli F (2013) Acute treatment of trigeminal neuralgia with onabotulinum toxin A. Clin Neuropharmacol 36:146–50CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang H, Lian Y, Ma Y, et al (2014) Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J Headache Pain 15:65CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bouhassira D, Attal N, Fermanian J, et al (2004) Development and validation of the neuropathic pain symptom inventory. Pain 108:248–57CrossRefPubMedGoogle Scholar
  18. 18.
    Morra ME, Elgebaly A, Elmaraezy A, et al (2016) Therapeutic efficacy and safety of Botulinum Toxin A Therapy in Trigeminal Neuralgia: a systematic review and meta-analysis of randomized controlled trials. J Headache Pain 17:63CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Attal N, Bouhassira D, Baron R, et al (2011) Assessing symptom profiles in neuropathic pain clinical trials: can it improve outcome? Eur J Pain 15:441–3CrossRefPubMedGoogle Scholar
  20. 20.
    Baron R, Maier C, Attal N, et al (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–72CrossRefPubMedGoogle Scholar
  21. 21.
    Demant DT, Lund K, Vollert J, et al (2014) The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotypestratified study. Pain 155:2263–73CrossRefPubMedGoogle Scholar
  22. 22.
    Luvisetto S, Marinelli S, Lucchetti F, Marchi F, et al (2006) Botulinum neurotoxins and formalin-induced pain: central vs peripheral effects in mice. Brain Res 1082:124–31CrossRefPubMedGoogle Scholar
  23. 23.
    Ishikawa H, Mitsui Y, Yoshitomi T, et al (2000) Presynaptic effects of botulinum toxin type A on the neuronally evoked response of albino and pigmented rabbit iris sphincter and dilator muscles. Jpn J Ophthalmol 44:106–9CrossRefPubMedGoogle Scholar
  24. 24.
    Purkiss J, Welch M, Doward S, Foster K (2000) Capsaïcinstimulated release of substance P from cultured dorsal root ganglion neurons: involvement of two distinct mechanisms. Biochem Pharmacol 59:1403–6CrossRefPubMedGoogle Scholar
  25. 25.
    Meunier FA, Colasante C, Faille L, et al (1996) Upregulation of calcitonin gene related peptide at mouse motor nerve terminals poisoned with botulinum type-A toxin. Pflugers Arch 431:R 297–8CrossRefGoogle Scholar
  26. 26.
    Durham PL, Cady Rand R., Cady R (2004) Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 44:35–42CrossRefPubMedGoogle Scholar
  27. 27.
    Morenilla-Palao C, Planells-Cases R, Garcia-Sanz N, Ferrer-Montiel A (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J Biol Chem 279:25665–72CrossRefPubMedGoogle Scholar
  28. 28.
    Luvisetto S, Marinelli S, Cobianchi S, Pavone F (2007) Antiallodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience 145:1–4CrossRefPubMedGoogle Scholar
  29. 29.
    Gazerani P, Staahl C, Drewes AM, Arendt-Nielsen L (2006) The effects of botulinum toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization. Pain 122:315–25CrossRefPubMedGoogle Scholar
  30. 30.
    Gazerani P, Pedersen NS, Staahl C, et al (2009) Subcutaneous botulinum toxin type A reduces capsaicin-induced trigeminal pain and vasomotor reactions in human skin. Pain 141:60–9CrossRefPubMedGoogle Scholar
  31. 31.
    Krämer HH, Angerer C, Erbguth F, et al (2003) Botulinum toxin A reduces neurogenic flare but has almost no effect on pain and hyperalgesia in human skin. J Neurol 250:188–93CrossRefPubMedGoogle Scholar
  32. 32.
    Bach-Rojecky L, Salković-Petrisić M, Lacković Z (2010) Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur J Pharmacol 633:10–4CrossRefPubMedGoogle Scholar
  33. 33.
    Bach-Rojecky L, Relja M, Lackovic Z (2005) Botulinum toxin type A in experimental neuropathic pain. J Neural Transm 112:215–9CrossRefPubMedGoogle Scholar
  34. 34.
    Marinelli S, Vacca V, Ricordy R, et al (2012) The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS One 7:e47977CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Paterson K, Lolignier S, Wood JN, et al (2014) Botulinum toxin-A treatment reduces human mechanical pain sensitivity and mechanotransduction. Ann Neurol 75:591–6CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Donnet A, Simon E, Cuny E, et al (2017) French guidelines for diagnosis and treatment of classical trigeminal neuralgia (French Headache Society and French Neurosurgical Society). Rev Neurol (Paris) 173:131–51CrossRefGoogle Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  1. 1.Inserm U-987 et CETDhôpital Ambroise-ParéBoulogne-BillancourtFrance

Personalised recommendations