Douleur et Analgésie

, Volume 21, Issue 2, pp 93–98

Rôle des potentiels évoqués par stimulation laser dans le diagnostic de la douleur centrale

Article

Résumé

La stimulation laser active sélectivement les thermonocicepteurs et permet ainsi l’enregistrement de réponses corticales spécifiquement liées à la transmission dans les voies spinothalamiques (les potentiels évoqués par laser ou PEL). L’utilité de ces réponses dans le diagnostic de la douleur centrale (DNC) découle du fait que celle-ci est le plus souvent associée à une atteinte des voies thermonociceptives. Les PEL ont montré leur capacité à détecter des lésions même minuscules des systèmes thermo-algiques. L’anomalie des PEL à la stimulation d’un territoire douloureux atteste du caractère neuropathique de la douleur, alors que la préservation des PEL a une signification plus ambiguë. Dans certains cas de DNC, la lésion peut concerner exclusivement les voies non nociceptives, et dans ce cas, seule l’obtention des potentiels évoqués somesthésiques (PES) permettra de l’attester électrophysiologiquement. L’orientation diagnostique vers un syndrome somatoforme ou non organique sera étayée par la normalité des PEL et des PES, notamment en cas d’hypo-esthésie clinique discordante avec les résultats électrophysiologiques.

Mots clés

Douleur neuropathique Douleur centrale Potentiels évoqués Diagnostic Pronostic 

Laser-evoked potentials in the diagnosis of central neuropathic pain

Abstract

Laser stimuli selectively activate thermonociceptors in the skin, thus enabling the recording of cortical responses, which specifically reflect transmission along pain and temperature (spinothalamic) pathways (laser-evoked potentials, or LEPs). The usefulness of LEPs in the diagnosis of central pain stems therefore from the fact that this kind of neuropathic pain is most often the result of a lesion in pain-temperature central pathways. In the last decade, LEPS have demonstrated their capacity to detect even minute lesions of thermo-nociceptive systems. LEP abnormality during stimulation of a painful area strongly substantiates the neuropathic character of the pain, while the interpretation of a normal LEP is more ambiguous. Indeed, in rare instances central pain may stem from lesions involving exclusively non-nociceptive pathways and in these cases only the recording of somatosensory evoked potentials (SEPs) to electrical non-noxious stimulation will enable electrophysiological confirmation of the neuropathic quality of the pain. In cases of clinical symptoms of pain and hypaesthesia with strictly normal (or enhanced) LEPs and SEPs, the possibility of a somatoform or non-organic pain disorder should be considered.

Keywords

Neuropathic pain Central pain Evoked potentials Diagnosis Prognosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    André-Obadia N, Mertens P, Gueguen A, et al. (2008) Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes. Neurology (in press)Google Scholar
  2. 2.
    André-Obadia N, Peyron R, Mertens P, et al. (2006) Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin Neurophysiol 117: 1536–1544PubMedCrossRefGoogle Scholar
  3. 3.
    Attal N, Brasseur L, Chauvin M, Bouhassira D (1998) A case of “pure” dynamic mechano-allodynia due to a lesion of the spinal cord: pathophysiological considerations. Pain 75: 399–404PubMedCrossRefGoogle Scholar
  4. 4.
    Beydoun A, Shen JF, Chimowitz MI, Casey KL (1994) Laser-evoked potentials: correlation with pain and temperature deficits due to stroke. Neurology 44: A343–A344Google Scholar
  5. 5.
    Boivie J, Leijon G, Johansson I (1989) Central poststroke pain: a study of the mechanisms through analyses of the sensory abnormalities. Pain 37: 173–185PubMedCrossRefGoogle Scholar
  6. 6.
    Bowsher D (1996) Central pain: clinical and physiological characteristics. J Neurol Neurosurg Psychiatr 61: 62–69PubMedGoogle Scholar
  7. 7.
    Bowsher D, Leijon G, Thuomas KA (1998) Central poststroke pain: correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology 51: 1352–1358PubMedGoogle Scholar
  8. 8.
    Bragard D, Chen ACN, Plaghki L (1996) Direct isolation of ultra-late (C-fibre) evoked brain potentials by CO2 laser stimulation of tiny cutaneous surface areas in man. Neurosci Lett 209: 81–84PubMedCrossRefGoogle Scholar
  9. 9.
    Bromm B, Frieling A, Lankers J (1991) Laser-evoked brain potentials in patients with dissociated loss of pain and temperature sensibility. Electroencephalogr Clin Neurophysiol 80: 284–291PubMedCrossRefGoogle Scholar
  10. 10.
    Bromm B, Neitzel H, Tecklenburg A, Treede RD (1983) Evoked cerebral potential correlates of C-fibre activity in man. Neurosci Lett 43: 109–114PubMedCrossRefGoogle Scholar
  11. 11.
    Bromm B, Treede RD (1987) Human cerebral potentials evoked by CO2 laser stimuli causing pain. Exp Brain Res 67: 153–162PubMedCrossRefGoogle Scholar
  12. 12.
    Casey KL, Beydoun A, Boivie J, et al. (1996) Laser-evoked cerebral potentials and sensory function in patients with central pain. Pain 64: 485–491PubMedCrossRefGoogle Scholar
  13. 13.
    Cesaro P, Amsallem B, Pollin B, et al. (1986) Organization of the median and intralaminar nuclei of the thalamus: hypotheses on their role in the onset of certain central pain. Rev Neurol (Paris) 142: 297–302Google Scholar
  14. 14.
    Cruccu G, Anand P, Attal N, et al. (2004) EFNS guidelines on assessment of neuropathic pain and treatment. Eur J Neurol 11: 153–162PubMedCrossRefGoogle Scholar
  15. 15.
    Cruccu G, Garcia-Larrea (2004) Clinical utility of pain-laser-evoked potentials. Suppl Clin Neurophysiol 57: 101–110PubMedGoogle Scholar
  16. 16.
    Cruccu G, Pennisi E, Truini A, et al. (2003) Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain 126: 2246–2256PubMedCrossRefGoogle Scholar
  17. 17.
    Defrin R, Ohry A, Blumen N, Urca G (2001) Characterization of chronic pain and somatosensory function in spinal cord injury subjects. Pain 89: 253–263PubMedCrossRefGoogle Scholar
  18. 18.
    Devor M, Gilad A, Arbilly M, et al. (2005) Paim: a neuropathic pain QTL on mouse chromosome 15 in a C3HxC58 backcross. Pain 116: 289–293PubMedCrossRefGoogle Scholar
  19. 19.
    Ducreux D, Attal N, Parker F, Bouhassira D (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129: 963–976PubMedCrossRefGoogle Scholar
  20. 20.
    Finnerup NB, Johannesen IL, Fuglsang-Frederiksen A, et al. (2003) Sensory function in spinal cord injury patients with and without central pain. Brain 126: 57–70PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia-Larrea (2004) Somatosensory volleys and laser-evoked potentials: first come, first served? (Editorial). Pain 112: 5–7PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Larrea L, Convers P, Magnin M, et al. (2002) Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125: 2766–2781PubMedCrossRefGoogle Scholar
  23. 23.
    Hansson P (2004) Poststroke pain case study: clinical characteristics, therapeutic options and long-term follow-up. Eur J Neurol 11(Suppl 1): 22–30PubMedCrossRefGoogle Scholar
  24. 24.
    Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34: 102–154CrossRefGoogle Scholar
  25. 25.
    Inui K, Tran TD, Hoshiyama M, Kakigi R (2002) Preferential stimulation of Adelta fibers by intra-epidermal needle electrode in humans. Pain 96: 247–252PubMedCrossRefGoogle Scholar
  26. 26.
    Jeanmonod D, Magnin M, Morel A (1993) Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 4: 475–478PubMedCrossRefGoogle Scholar
  27. 27.
    Kanda M, Mima T, Xu X, et al. (1996) Pain-related somatosensory evoked potentials can quantitatively evaluate hypalgesia in Wallenberg’s syndrome. Acta Neurol Scand 94: 131–136PubMedGoogle Scholar
  28. 28.
    Kim JS (2007) Medial medullary infarct aggravates central poststroke pain caused by previous lateral medullary infarct. Eur Neurol 58: 41–43PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JS, Choi-Kwon S (1999) Sensory sequelae of medullary infarction: differences between lateral and medial medullary syndrome. Stroke 30: 2697–2703PubMedGoogle Scholar
  30. 30.
    Lorenz J, Hansen HC, Kunze K, Bromm B (1996) Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations: a case study. J Neurol Neurosurg Psychiatry 61: 107–110PubMedCrossRefGoogle Scholar
  31. 31.
    Lorenz J, Kunze K, Bromm B (1998) Differentiation of conversive sensory loss and malingering by P300 in a modified oddball task. Neuroreport 9: 187–191PubMedCrossRefGoogle Scholar
  32. 32.
    Macgowan DJL, Janal MN, Clark MC, et al. (1997) Central poststroke pain and Wallenberg’s lateral medullary infarction: frequency, character, and determinants in 63 patients. Neurology 49: 120–125PubMedGoogle Scholar
  33. 33.
    Magerl W, Ali Z, Ellrich J, et al. (1999) C-and Adelta-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82: 127–137PubMedCrossRefGoogle Scholar
  34. 34.
    Mauguiere F, Desmedt JE (1988) Thalamic pain syndrome of Dejerine-Roussy. Differentiation of four subtypes assisted by somatosensory evoked potentials data. Arch Neurol 45: 1312–1320PubMedGoogle Scholar
  35. 35.
    Montes C, Magnin M, Maarrawi J, et al. (2005) Thalamic thermo-algesic transmission: ventral posterior (VP) complex versus VMpo in the light of a thalamic infarct with central pain. Pain 113: 223–232PubMedCrossRefGoogle Scholar
  36. 36.
    Mouraux A, Plaghki L (2004) Single-trial detection of human brain responses evoked by laser activation of Adelta-nociceptors using the wavelet transform of EEG epochs. Neurosci Lett 361: 241–244PubMedCrossRefGoogle Scholar
  37. 37.
    Nathan PW, Smith MC, Cook AW (1986) Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. Brain 109: 1003–1041PubMedCrossRefGoogle Scholar
  38. 38.
    Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiol Clin 33: 269–277PubMedCrossRefGoogle Scholar
  39. 39.
    Shy ME, Frohman EM, So YT, et al. (2003) Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 60: 898–904PubMedCrossRefGoogle Scholar
  40. 40.
    Tasker RR (1982) Identification of pain processing systems by electrical stimulation of the brain. Human Neurobiol 1: 261–272Google Scholar
  41. 41.
    Torebjork HE, Schady W, Ochoa JL (1984) A new method for demonstration of central effects of analgesic agents in man. Neurol Neurosurg Psychiatry 47: 862–869Google Scholar
  42. 42.
    Treede RD, Lankers J, Frieling A, et al. (1991) Cerebral potentials evoked by painful, laser stimuli in patients with syringomyelia. Brain 114: 1595–1607PubMedCrossRefGoogle Scholar
  43. 43.
    Treede RD, Lorenz J, Baumgartner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33: 303–314PubMedCrossRefGoogle Scholar
  44. 44.
    Truini A, Galeoti F, Cruccu G, Garcia-Larrea L (2007) Inhibition of cortical responses to Adelta inputs by a preceding C-related response. Testing the “First come, first served” hypothesis of cortical laser-evoked potentials. Pain 131: 341–347PubMedCrossRefGoogle Scholar
  45. 45.
    Vestergaard K, Nielsen J, Andersen G, et al. (1995) Sensory abnormalities in consecutive, unselected patients with central poststroke pain. Pain 61: 177–186PubMedCrossRefGoogle Scholar
  46. 46.
    Wu Q, Garcia-Larrea L, Mertens P, et al. (1999) Hyperalgesia with reduced laser-evoked potentials in neuropathic pain. Pain 80: 209–214PubMedCrossRefGoogle Scholar
  47. 47.
    Zimmermann M (1968) Dorsal root potentials after C-fiber stimulation. Science 160: 896–898PubMedCrossRefGoogle Scholar

Copyright information

© Médecine et Hygiène et Springer-Verlag France 2008

Authors and Affiliations

  1. 1.Inserm U879, Université Claude-Bernard-Lyon-1hôpital neurologique, Rez-de-JardinLyonFrance

Personalised recommendations