Advertisement

Swarm Intelligence

, Volume 13, Issue 3–4, pp 173–192 | Cite as

The intelligent water drops algorithm: why it cannot be considered a novel algorithm

A brief discussion on the use of metaphors in optimization
  • Christian Leonardo Camacho-VillalónEmail author
  • Marco Dorigo
  • Thomas Stützle
Article

Abstract

In this article, we rigorously analyze the intelligent water drops (IWD) algorithm, a metaphor-based approach for the approximate solution of discrete optimization problems proposed by Shah-Hosseini (in: Proceedings of the 2007 congress on evolutionary computation (CEC 2007), IEEE Press, Piscataway, NJ, pp 3226–3231, 2007). We demonstrate that all main algorithmic components of IWD are simplifications or special cases of ant colony optimization (ACO), and therefore, IWD is simply a particular instantiation of ACO. We show that the natural metaphor of “water drops flowing in rivers removing the soil from the riverbed”, the source of inspiration of IWD, is unnecessary, misleading and based on unconvincing assumptions of river dynamics and soil erosion that lack a real scientific rationale. We carry out a detailed review of modifications and extensions proposed to IWD since its first publication in 2007. We find that research on IWD is for the most part misguided and that the vast majority of the ideas explored in the literature on IWD have been studied many years before in the context of ACO. Finally, we discuss the use of natural metaphors as a source of inspiration for optimization algorithms, which has become an extremely popular trend in the last 15 years, and propose some criteria to limit their usage to the cases in which the metaphor is indeed useful.

Keywords

Intelligent water drops Ant colony optimization Novel algorithm Metaphor-based algorithm 

Notes

Acknowledgements

Marco Dorigo and Thomas Stützle acknowledge support from the Belgian FRS-FNRS, of which they are Research Directors.

Supplementary material

11721_2019_165_MOESM1_ESM.ods (21 kb)
Supplementary material 1 (ods 21 KB)
11721_2019_165_MOESM2_ESM.pdf (258 kb)
Supplementary material 2 (pdf 258 KB)

References

  1. Alaya, I., Solnon, C., & Ghédira, K. (2007). Ant colony optimization for multi-objective optimization problems. In Proceedings of the 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007) (Vol. 1, pp. 450–457) IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  2. Alijla, B. O., Wong, L. P., Lim, C. P., Khader, A. T., & Al-Betar, M. A. (2014). A modified intelligent water drops algorithm and its application to optimization problems. Expert Systems with Applications, 41(15), 6555–6569.Google Scholar
  3. Askarzadeh, A. (2014). Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Communications in Nonlinear Science and Numerical Simulation, 19(4), 1213–1228.MathSciNetGoogle Scholar
  4. Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 congress on evolutionary computation (CEC 2007) (pp. 3226–3231).Google Scholar
  5. Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm. In: Goldberg DE, Lingle R (Eds.) Proceedings of the second international conference on genetic algorithms (ICGA’87), Lawrence Erlbaum Associates (Vol. 206, pp. 14–21).Google Scholar
  6. Birattari, M., Balaprakash, P., & Dorigo, M. (2006). The ACO/F-RACE algorithm for combinatorial optimization under uncertainty. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. J. Gutjahr, R. F. Hartl, & M. Reimann (Eds.), Metaheuristics: Progress in complex systems optimization, operations research/computer science interfaces series (Vol. 39, pp. 189–203). New York, NY: Springer.zbMATHGoogle Scholar
  7. Birbil, Ş. I., & Fang, S. C. (2003). An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25(3), 263–282.MathSciNetzbMATHGoogle Scholar
  8. Blum, C. (2005). Beam-ACO–hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591.zbMATHGoogle Scholar
  9. Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 34(2), 1161–1172.Google Scholar
  10. Booyavi, Z., Teymourian, E., Komaki, G., & Sheikh, S. (2014). An improved optimization method based on the intelligent water drops algorithm for the vehicle routing problem. In Proceedings of 2014 IEEE symposium on computational intelligence in production and logistics systems (CIPLS) (pp. 59–66), IEEE PressGoogle Scholar
  11. Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research, 89, 319–328.MathSciNetzbMATHGoogle Scholar
  12. Campelo, F. (2017). Evolutionary computation bestiary. https://github.com/fcampelo/EC-Bestiary, version visited last on 22 January 2018
  13. Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed optimization by ant colonies. In: F. J. Varela & P. Bourgine (Eds.) Proceedings of the first european conference on artificial life (pp. 134–142), MIT Press, Cambridge, MAGoogle Scholar
  14. Cordón, O., de Viana, IF., Herrera, F., & Moreno, L. (2000). A new ACO model integrating evolutionary computation concepts: The best-worst ant system. In: M. Dorigo, et al. (Eds.) Abstract proceedings of ANTS 2000: From ant colonies to artificial ants: Second international workshop on ant algorithms, IRIDIA, Université Libre de Bruxelles, Belgium (pp. 22–29)Google Scholar
  15. Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., et al. (1999). New ideas in optimization. New York: McGraw Hill.Google Scholar
  16. Cuevas, E., Miguel, C., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374–6384.Google Scholar
  17. Deneubourg, J. L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2), 159–168.  https://doi.org/10.1007/BF01417909.CrossRefGoogle Scholar
  18. Dorigo, M. (1992). Optimization, learning and natural algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy (in Italian)Google Scholar
  19. Dorigo, M., & Di Caro, G. A. (1999). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 11–32). London, UK: McGraw Hill.Google Scholar
  20. Dorigo, M., & Gambardella, L. M. (1996). Ant Colony System. Tech. Rep. IRIDIA/96-05, IRIDIA, Université Libre de Bruxelles, BelgiumGoogle Scholar
  21. Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the traveling salesman problem. BioSystems, 43(2), 73–81.  https://doi.org/10.1016/S0303-2647(97)01708-5.CrossRefGoogle Scholar
  22. Dorigo, M., & Gambardella, L. M. (1997b). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.Google Scholar
  23. Dorigo, M., Maniezzo, V., & Colorni, A. (1991a). The ant system: An autocatalytic optimizing process. Tech. Rep. 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, ItalyGoogle Scholar
  24. Dorigo, M., Maniezzo, V., & Colorni, A. (1991b). Positive feedback as a search strategy. Tech. Rep. 91-016, Dipartimento di Elettronica, Politecnico di Milano, ItalyGoogle Scholar
  25. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 26(1), 29–41.Google Scholar
  26. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  27. Duan, H., Liu, S., & Wu, J. (2008). Air robot path planning based on intelligent water drops optimization. In Proceedings of the international joint conference on neural networks (IJCNN 2008 - Hong Kong) (pp. 1397–1401) IEEE.Google Scholar
  28. Duan, H., Liu, S., & Wu, J. (2009). Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerospace Science and Technology, 13(8), 442–449.Google Scholar
  29. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43)Google Scholar
  30. Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang-big crunch. Advances in Engineering Software, 37(2), 106–111.Google Scholar
  31. Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures, 110, 151–166.Google Scholar
  32. Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the traveling salesman problem. In: A. Prieditis & S. Russell (Eds.) Proceedings of the twelfth international conference on machine learning (ML-95) (pp. 252–260). Morgan Kaufmann Publishers, Palo Alto, CA.Google Scholar
  33. Gambardella, L. M., & Dorigo, M. (1996). Solving symmetric and asymmetric TSPs by ant colonies. In T. Bäck, Fukuda & Z. Michalewicz (Eds.) Proceedings of the 1996 IEEE international conference on evolutionary computation (ICEC’96) (pp. 622–627). IEEE Press, Piscataway, NJ.Google Scholar
  34. Gambardella, L. M., Taillard, É. D., & Dorigo, M. (1999). Ant colonies for the quadratic assignment problem. Journal of the Operational Research Society, 50(2), 167–176.zbMATHGoogle Scholar
  35. Gandomi, A. H. (2014). Interior search algorithm (isa): A novel approach for global optimization. ISA Transactions, 53(4), 1168–1183.Google Scholar
  36. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Journal of Simulation, 76(2), 60–68.Google Scholar
  37. Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of Metaheuristics, International Series in Operations Research & Management Science (2nd ed., Vol. 146). New York, NY: Springer.Google Scholar
  38. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley.zbMATHGoogle Scholar
  39. Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In G. J. E. Rawlins (Ed.), Foundations of genetic algorithms (Vol. 1, pp. 69–93). Elsevier.Google Scholar
  40. Guntsch, M., & Middendorf, M. (2002). A population based approach for ACO. In S. Cagnoni et al. (Eds.) Applications of evolutionary computing, proceedings of evoworkshops 2002, Springer, Heidelberg, Germany, Lecture Notes in Computer Science, vol 2279, pp 71–80Google Scholar
  41. Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175–184.MathSciNetGoogle Scholar
  42. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.Google Scholar
  43. Joslin, D. E., & Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial Intelligence Research, 10, 353–373.MathSciNetzbMATHGoogle Scholar
  44. Kacprzyk, J., & Pedrycz, W. (Eds.). (2015). Springer handbook of computational intelligence. Heidelberg: Springer.zbMATHGoogle Scholar
  45. Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3–4), 267–289.zbMATHGoogle Scholar
  46. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.MathSciNetzbMATHGoogle Scholar
  47. Maniezzo, V. (1999). Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11(4), 358–369.MathSciNetzbMATHGoogle Scholar
  48. Maniezzo, V., & Carbonaro, A. (2000). An ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8), 927–935.Google Scholar
  49. Maniezzo, V., & Colorni, A. (1999). The Ant System applied to the quadratic assignment problem. IEEE Transactions on Data and Knowledge Engineering, 11(5), 769–778.Google Scholar
  50. Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics, 1(4), 355–366.Google Scholar
  51. Melvin, G., Dodd, T. J., & Groß, R. (2012). Why ‘GSA: A gravitational search algorithm’ is not genuinely based on the law of gravity. Natural Computing, 11(4), 719–720.MathSciNetzbMATHGoogle Scholar
  52. Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling & Software, 18(8–9), 761–799.Google Scholar
  53. Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution program. Berlin: Springer.zbMATHGoogle Scholar
  54. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.Google Scholar
  55. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.Google Scholar
  56. Msallam, M. M., & Hamdan, M. (2011). Improved intelligent water drops algorithm using adaptive schema. International Journal of Bio-Inspired Computation, 3(2), 103–111.Google Scholar
  57. Niu, S., Ong, S. K., & Nee, A. Y. (2012). An improved intelligent water drops algorithm for achieving optimal job-shop scheduling solutions. International Journal of Production Research, 50(15), 4192–4205.Google Scholar
  58. Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems, 22(3), 52–67.MathSciNetGoogle Scholar
  59. Piotrowski, A. P., Napiorkowski, J. J., & Rowinski, P. M. (2014). How novel is the “novel” black hole optimization approach? Information Sciences, 267, 191–200.Google Scholar
  60. Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315.Google Scholar
  61. Ray, T., & Liew, K. M. (2003). Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7(4), 386–396.Google Scholar
  62. Shah-Hosseini, H. (2007). Problem solving by intelligent water drops. In Proceedings of the 2007 congress on evolutionary computation (CEC 2007) (pp. 3226–3231). IEEE, IEEE Press, Piscataway, NJGoogle Scholar
  63. Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method for solving the multiple knapsack problem. International Journal of Intelligent Computing and Cybernetics, 1(2), 193–212.MathSciNetzbMATHGoogle Scholar
  64. Shah-Hosseini, H. (2009). The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1–2), 71–79.Google Scholar
  65. Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.Google Scholar
  66. Simon, D., Rarick, R., Ergezer, M., & Du, D. (2011). Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Information Sciences, 181(7), 1224–1248.zbMATHGoogle Scholar
  67. Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173.  https://doi.org/10.1016/j.ejor.2006.06.046.MathSciNetCrossRefzbMATHGoogle Scholar
  68. Sörensen, K. (2015). Metaheuristics–the metaphor exposed. International Transactions in Operational Research, 22(1), 3–18.  https://doi.org/10.1111/itor.12001.MathSciNetCrossRefzbMATHGoogle Scholar
  69. Stützle, T., & Hoos, H. H. (1996). Improving the Ant System: A detailed report on the \({\mathscr {MAX}}\)\({\mathscr {MIN}}\) Ant System. Tech. Rep. AIDA–96–12, FG Intellektik, FB Informatik, TU Darmstadt, GermanyGoogle Scholar
  70. Stützle, T., & Hoos, H. H. (1997). The \({\mathscr {MAX}}\)\({\mathscr {MIN}}\) ant system and local search for the traveling salesman problem. In T. Bäck, Z. Michalewicz & X. Yao, (Eds.) Proceedings of the 1997 IEEE international conference on evolutionary computation (ICEC’97) (pp. 309–314). IEEE Press, Piscataway, NJ.Google Scholar
  71. Stützle, T., & Hoos, H. H. (2000). \({\mathscr {MAX}}\)\({\mathscr {MIN}}\) ant system. Future Generation Computer Systems, 16(8), 889–914.Google Scholar
  72. Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca, M. A., Birattari, M., et al. (2012). Parameter adaptation in ant colony optimization. In Y. Hamadi, E. Monfroy, & F. Saubion (Eds.), Autonomous Search (pp. 191–215). Berlin: Springer.  https://doi.org/10.1007/978-3-642-21434-9_8.CrossRefGoogle Scholar
  73. Teymourian, E., Kayvanfar, V., Komaki, G. M., & Khodarahmi, M. (2016a). An enhanced intelligent water drops algorithm for scheduling of an agile manufacturing system. International Journal of Information Technology & Decision Making, 15(02), 239–266.Google Scholar
  74. Teymourian, E., Kayvanfar, V., Komaki, G. M., & Zandieh, M. (2016b). Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Information Sciences, 334, 354–378.Google Scholar
  75. Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology. International Journal of Applied Metaheuristic Computing, 12(2), 50–60.Google Scholar
  76. Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms (pp. 169–178). SpringerGoogle Scholar
  77. Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240–249). SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations