Informative and misinformative interactions in a school of fish

  • Emanuele Crosato
  • Li Jiang
  • Valentin Lecheval
  • Joseph T. Lizier
  • X. Rosalind Wang
  • Pierre Tichit
  • Guy Theraulaz
  • Mikhail Prokopenko
Article

Abstract

Quantifying distributed information processing is crucial to understanding collective motion in animal groups. Recent studies have begun to apply rigorous methods based on information theory to quantify such distributed computation. Following this perspective, we use transfer entropy to quantify dynamic information flows locally in space and time across a school of fish during directional changes around a circular tank, i.e., U-turns. This analysis reveals peaks in information flows during collective U-turns and identifies two different flows: an informative flow (positive transfer entropy) from fish that have already turned to fish that are turning, and a misinformative flow (negative transfer entropy) from fish that have not turned yet to fish that are turning. We also reveal that the information flows are related to relative position and alignment between fish and identify spatial patterns of information and misinformation cascades. This study offers several methodological contributions and we expect further application of these methodologies to reveal intricacies of self-organisation in other animal groups and active matter in general.

Keywords

Collective animal behaviour Collective motion Fish interactions Information dynamics 

Notes

Acknowledgements

GT designed research; VL, PT and GT performed research; VL, LJ, PT, RW and GT analysed data. EC, JL, RW and MP developed information dynamics methods, performed information-theoretic analysis, and identified information flows and motifs. EC designed, developed and run software for the information-theoretic analysis. GT, JL, EC and MP conceived and analysed information cascade. EC, JL and MP wrote the paper. GT and VL edited the manuscript and contributed to the writing.

Funding E.C. was supported by the University of Sydney’s “Postgraduate Scholarship in the field of Complex Systems” from Faculty of Engineering & IT and by a CSIRO top-up scholarship. L.J. was supported by a grant from the China Scholarship Council (CSC NO.201506040167). V.L. was supported by a doctoral fellowship from the scientific council of the University Paul Sabatier. This study was supported by grants from the Centre National de la Recherche Scientifique and University Paul Sabatier (project Dynabanc). J.L. was supported through the Australian Research Council DECRA grant DE160100630. M.P. was supported by The University of Sydney’s DVC Research Strategic Research Excellence Initiative (SREI-2020) project, “CRISIS: Crisis Response in Interdependent Social-Infrastructure Systems” (IRMA 194163). Sydney Informatics Hub at the University of Sydney provided access to HPC computational resources that have contributed to the research results reported within the paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

All experiments have been approved by the Ethics Committee for Animal Experimentation of the Toulouse Research Federation in Biology N1 and comply with the European legislation for animal welfare.

Supplementary material

Supplementary material 1 (avi 1522 KB)

Supplementary material 2 (avi 573 KB)

11721_2018_157_MOESM3_ESM.pdf (2 mb)
Supplementary material 3 (pdf 2047 KB)

References

  1. Albantakis, L., Hintze, A., Koch, C., Adami, C., & Tononi, G. (2014). Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLOS Computational Biology, 10(12), 1–19.CrossRefGoogle Scholar
  2. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Grigera, T. S., Jelić, A., et al. (2014a). Information transfer and behavioural inertia in starling flocks. Nature Physics, 10(9), 691–696.CrossRefGoogle Scholar
  3. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Jelic, A., Melillo, S., et al. (2015). Emergence of collective changes in travel direction of starling flocks from individual birds’ fluctuations. Journal of The Royal Society Interface, 12(108), 20150319.CrossRefGoogle Scholar
  4. Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Melillo, S., Parisi, L., et al. (2014b). Collective behaviour without collective order in wild swarms of midges. PLOS Computational Biology, 10(7), 1–10.CrossRefGoogle Scholar
  5. Ay, N., & Polani, D. (2008). Information flows in causal networks. Advances in Complex Systems, 11(01), 17–41.MathSciNetCrossRefMATHGoogle Scholar
  6. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232–1237.CrossRefGoogle Scholar
  7. Barnett, L., Barrett, A. B., & Seth, A. K. (2009). Granger causality and transfer entropy are equivalent for gaussian variables. Physical Review Letters, 103, 238701.CrossRefGoogle Scholar
  8. Barnett, L., & Bossomaier, T. (2012). Transfer entropy as a Log-Likelihood ratio. Physical Review Letters, 109, 138105.CrossRefGoogle Scholar
  9. Barnett, L., Lizier, J. T., Harré, M., Seth, A. K., & Bossomaier, T. (2013). Information flow in a kinetic ising model peaks in the disordered phase. Physical Review Letters, 111(17), 177203.CrossRefGoogle Scholar
  10. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological), 57(1), 289–300.MathSciNetMATHGoogle Scholar
  11. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., et al. (2012). Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of Sciences, 109(13), 4786–4791.CrossRefGoogle Scholar
  12. Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., & Asada, M. (2012). Information processing in echo state networks at the edge of chaos. Theory in Biosciences, 131(3), 205–213.CrossRefGoogle Scholar
  13. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford: Oxford University Press.MATHGoogle Scholar
  14. Buhl, J., & Rogers, S. (2016). Mechanisms underpinning aggregation and collective movement by insect groups. Current Opinion in Insect Science, 15, 125–130.CrossRefGoogle Scholar
  15. Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., et al. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406.CrossRefGoogle Scholar
  16. Buhl, J., Sword, G. A., Clissold, F. J., & Simpson, S. J. (2010). Group structure in locust migratory bands. Behavioral Ecology and Sociobiology, 65(2), 265–273.CrossRefGoogle Scholar
  17. Butail, S., Ladu, F., Spinello, D., & Porfiri, M. (2014). Information flow in animal-robot interactions. Entropy, 16(3), 1315–1330.CrossRefGoogle Scholar
  18. Butail, S., Mwaffo, V., & Porfiri, M. (2016). Model-free information-theoretic approach to infer leadership in pairs of zebrafish. Physical Review E, 93(4), 042411.CrossRefGoogle Scholar
  19. Calovi, D. S., Litchinko, A., Lecheval, V., Lopez, U., Pérez Escudero, A., Chaté, H., et al. (2018). Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors. PLOS Computational Biology, 14(1), 1–28.CrossRefGoogle Scholar
  20. Calovi, D. S., Lopez, U., Schuhmacher, P., Chaté, H., Sire, C., & Theraulaz, G. (2015). Collective response to perturbations in a data-driven fish school model. Journal of The Royal Society Interface, 12(104), 20141362.CrossRefGoogle Scholar
  21. Cavagna, A., Giardina, I., & Ginelli, F. (2013a). Boundary information inflow enhances correlation in flocking. Physical Review Letters, 110(16), 168107.CrossRefGoogle Scholar
  22. Cavagna, A., Queirós, S. M. D., Giardina, I., Stefanini, F., & Viale, M. (2013b). Diffusion of individual birds in starling flocks. Proceedings of the Royal Society of London B: Biological Sciences, 280(1756), 20122484.CrossRefGoogle Scholar
  23. Chicharro, D., & Ledberg, A. (2012). When two become one: The limits of causality analysis of brain dynamics. PLOS ONE, 7(3), 1–16.CrossRefGoogle Scholar
  24. Cliff, O. M., Lizier, J. T., Wang, X. R., Wang, P., Obst, O., & Prokopenko, M. (2017). Quantifying long-range interactions and coherent structure in multi-agent dynamics. Artificial Life, 23(1), 34–57.CrossRefGoogle Scholar
  25. Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.CrossRefGoogle Scholar
  26. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. New York: Wiley-Interscience.MATHGoogle Scholar
  27. Crosato, E., Spinney, R. E., Nigmatullin, R., Lizier, J. T., & Prokopenko, M. (2018). Thermodynamics and computation during collective motion near criticality. Physical Review E, 97, 012120.CrossRefGoogle Scholar
  28. Dimitriadis, S., Sun, Y., Laskaris, N., Thakor, N., & Bezerianos, A. (2016). Revealing cross-frequency causal interactions during a mental arithmetic task through symbolic transfer entropy: A novel vector-quantization approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(10), 1017–1028.CrossRefGoogle Scholar
  29. Faes, L., Marinazzo, D., Montalto, A., & Nollo, G. (2014). Lag-specific transfer entropy as a tool to assess cardiovascular and cardiorespiratory information transfer. IEEE Transactions on Biomedical Engineering, 61(10), 2556–2568.CrossRefGoogle Scholar
  30. Faes, L., Nollo, G., & Porta, A. (2011). Information-based detection of nonlinear granger causality in multivariate processes via a nonuniform embedding technique. Physical Review E, 83(5), 051112.CrossRefGoogle Scholar
  31. Faes, L., & Porta, A. (2014). Conditional Entropy-Based evaluation of information dynamics in physiological systems. In M. Wibral, R. Vicente, & J. T. Lizier (Eds.), Directed information measures in neuroscience, understanding complex systems (pp. 61–86). Berlin: Springer.CrossRefGoogle Scholar
  32. Fano, R. M. (1961). Transmission of information: A statistical theory of communications. Cambridge, MA: M.I.T Press.MATHGoogle Scholar
  33. Feldman, D. P., McTague, C. S., & Crutchfield, J. P. (2008). The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing. Chaos, 18(4), 043106.MathSciNetCrossRefGoogle Scholar
  34. Fourcassié, V., Dussutour, A., & Deneubourg, J. L. (2010). Ant traffic rules. The Journal of Experimental Biology, 213(14), 2357–2363.CrossRefGoogle Scholar
  35. Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., et al. (2012). Deciphering interactions in moving animal groups. PLOS Computational Biology, 8(9), 1–11.MathSciNetCrossRefGoogle Scholar
  36. Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77(378), 304–313.MathSciNetCrossRefMATHGoogle Scholar
  37. Giardina, I. (2008). Collective behavior in animal groups: Theoretical models and empirical studies. Human Frontier Science Program Journal, 2(4), 205–219.Google Scholar
  38. Ginelli, F., Peruani, F., Pillot, M. H., Chaté, H., Theraulaz, G., & Bon, R. (2015). Intermittent collective dynamics emerge from conflicting imperatives in sheep herds. Proceedings of the National Academy of Sciences, 112(41), 12729–12734.CrossRefGoogle Scholar
  39. Gómez, C., Lizier, J. T., Schaum, M., Wollstadt, P., Grützner, C., Uhlhaas, P., et al. (2014). Reduced predictable information in brain signals in autism spectrum disorder. Frontiers in Neuroinformatics, 8, 9.CrossRefGoogle Scholar
  40. Herbert-Read, J. E., Buhl, J., Hu, F., Ward, A. J., & Sumpter, D. J. (2015). Initiation and spread of escape waves within animal groups. Royal Society open science, 2(4), 140355.CrossRefGoogle Scholar
  41. Herbert-Read, J. E., Perna, A., Mann, R. P., Schaerf, T. M., Sumpter, D. J. T., & Ward, A. J. W. (2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National Academy of Sciences, 108(46), 18726–18731.CrossRefGoogle Scholar
  42. James, R. G., Barnett, N., & Crutchfield, J. P. (2016). Information flows? A critique of transfer entropies. Physical Review Letters, 116(23), 238701.MathSciNetCrossRefGoogle Scholar
  43. Jeanson, R., Deneubourg, J. L., & Theraulaz, G. (2004). Discrete dragline attachment induces aggregation in spiderlings of a solitary species. Animal Behaviour, 67(3), 531–537.CrossRefGoogle Scholar
  44. Jeanson, R., Rivault, C., Deneubourg, J. L., Blanco, S., Fournier, R., Jost, C., et al. (2005). Self-organized aggregation in cockroaches. Animal Behaviour, 69(1), 169–180.CrossRefGoogle Scholar
  45. Jiang, L., Giuggioli, L., Perna, A., Escobedo, R., Lecheval, V., Sire, C., et al. (2017). Identifying influential neighbors in animal flocking. PLOS Computational Biology, 13(11), 1–32.CrossRefGoogle Scholar
  46. Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C., & Couzin, I. D. (2011). Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences, 108(46), 18720–18725.CrossRefGoogle Scholar
  47. Khadem, A., Hossein-Zadeh, G. A., & Khorrami, A. (2016). Long-range reduced predictive information transfers of autistic youths in EEG sensor-space during face processing. Brain topography, 29(2), 283–295.CrossRefGoogle Scholar
  48. Khuong, A., Gautrais, J., Perna, A., Sbaï, C., Combe, M., Kuntz, P., et al. (2016). Stigmergic construction and topochemical information shape ant nest architecture. Proceedings of the National Academy of Sciences, 113(5), 1303–1308.CrossRefGoogle Scholar
  49. Ladu, F., Mwaffo, V., Li, J., Macrì, S., & Porfiri, M. (2015). Acute caffeine administration affects zebrafish response to a robotic stimulus. Behavioural Brain Research, 289, 48–54.CrossRefGoogle Scholar
  50. Langton, C. G. (1990). Computation at the edge of chaos: Phase transitions and emergent computation. Physica D, 42(1–3), 12–37.MathSciNetCrossRefGoogle Scholar
  51. Larson, L. (1983). The symmetric derivative. Transactions of the American Mathematical Society, 277(2), 589–599.MathSciNetCrossRefMATHGoogle Scholar
  52. Lecheval, V., Jiang, L., Tichit, P., Sire, C., Hemelrijk, C. K., & Theraulaz, G. (2017). Domino-like propagation of collective u-turns in fish schools. submitted to bioRxiv.Google Scholar
  53. Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science, 168(3934), 1003–1005.CrossRefGoogle Scholar
  54. Lizier, J. T. (2013). The local information dynamics of distributed computation in complex systems, Springer Theses. Berlin: Springer.CrossRefMATHGoogle Scholar
  55. Lizier, J. T. (2014a). JIDT: An information-theoretic toolkit for studying the dynamics of complex systems. Frontiers in Robotics and AI, 1, 11.CrossRefGoogle Scholar
  56. Lizier, J. T. (2014b). Measuring the dynamics of information processing on a local scale in time and space. In M. Wibral, R. Vicente, & J. T. Lizier (Eds.), Directed information measures in neuroscience, understanding complex systems (pp. 161–193). Berlin: Springer.CrossRefGoogle Scholar
  57. Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. D., & Prokopenko, M. (2011a). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. Journal of Computational Neuroscience, 30(1), 85–107.MathSciNetCrossRefGoogle Scholar
  58. Lizier, J. T., Pritam, S., & Prokopenko, M. (2011b). Information dynamics in small-world boolean networks. Artificial Life, 17(4), 293–314.CrossRefGoogle Scholar
  59. Lizier, J. T., & Prokopenko, M. (2010). Differentiating information transfer and causal effect. The European Physical Journal B, 73(4), 605–615.CrossRefGoogle Scholar
  60. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2008). Local information transfer as a spatiotemporal filter for complex systems. Physical Review E, 77(2), 026110.MathSciNetCrossRefGoogle Scholar
  61. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2010). Information modification and particle collisions in distributed computation. Chaos, 20(3), 037109.MathSciNetCrossRefMATHGoogle Scholar
  62. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2012). Local measures of information storage in complex distributed computation. Information Sciences, 208, 39–54.CrossRefGoogle Scholar
  63. Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2014). A framework for the local information dynamics of distributed computation in complex systems. In M. Prokopenko (Ed.), Guided self-organization: Inception, emergence, complexity and computation (Vol. 9, pp. 115–158). Berlin: Springer.CrossRefGoogle Scholar
  64. Lizier, J. T., & Rubinov, M. (2012). Multivariate construction of effective computational networks from observational data. Technical Report Preprint 25/2012, Max Planck Institute for Mathematics in the Sciences.Google Scholar
  65. Lord, W. M., Sun, J., Ouellette, N. T., & Bollt, E. M. (2016). Inference of causal information flow in collective animal behavior. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 2(1), 107–116.CrossRefGoogle Scholar
  66. Mann, R. P., Perna, A., Strömbom, D., Garnett, R., Herbert-Read, J. E., Sumpter, D. J. T., et al. (2012). Multi-scale inference of interaction rules in animal groups using bayesian model selection. PLOS Computational Biology, 8(1), 1–12.CrossRefGoogle Scholar
  67. Marinazzo, D., Pellicoro, M., & Stramaglia, S. (2012). Causal information approach to partial conditioning in multivariate data sets. Computational and Mathematical Methods in Medicine, 2012, 303601. https://doi.org:1155/2012/303601.Google Scholar
  68. Materassi, M., Consolini, G., Smith, N., & De Marco, R. (2014). Information theory analysis of cascading process in a synthetic model of fluid turbulence. Entropy, 16(3), 1272–1286.CrossRefGoogle Scholar
  69. May, R. M. (1979). Flight formations in geese and other birds. Nature, 282, 778–780.CrossRefGoogle Scholar
  70. Miller, J. M., Wang, X. R., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2014). Measuring information dynamics in swarms. In M. Prokopenko (Ed.), Guided self-organization: Inception, emergence, complexity and computation (Vol. 9, pp. 343–364). Berlin: Springer.CrossRefGoogle Scholar
  71. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., & Theraulaz, G. (2009). Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proceedings of the Royal Society of London B: Biological Sciences, 276(1668), 2755–2762.CrossRefGoogle Scholar
  72. Moussaïd, M., Helbing, D., & Theraulaz, G. (2011). How simple rules determine pedestrian behavior and crowd disasters. Proceedings of the National Academy of Sciences, 108(17), 6884–6888.CrossRefGoogle Scholar
  73. Nagy, M., Ákos, Z., Biro, D., & Vicsek, T. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.CrossRefGoogle Scholar
  74. Nagy, M., Vásárhelyi, G., Pettit, B., Roberts-Mariani, I., Vicsek, T., & Biro, D. (2013). Context-dependent hierarchies in pigeons. Proceedings of the National Academy of Sciences, 110(32), 13049–13054.CrossRefGoogle Scholar
  75. Orange, N., & Abaid, N. (2015). A transfer entropy analysis of leader-follower interactions in flying bats. The European Physical Journal Special Topics, 224(17), 3279–3293.CrossRefGoogle Scholar
  76. Parrish, J. K., Viscido, S. V., & Grünbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 202(3), 296–305.CrossRefGoogle Scholar
  77. Partridge, B. (1980). The effect of school size on the structure and dynamics of minnow schools. Animal Behaviour, 28(1), 68-IN3.MathSciNetCrossRefGoogle Scholar
  78. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., & de Polavieja, G. G. (2014). idTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nature Methods, 11(7), 743–748.CrossRefGoogle Scholar
  79. Potts, W. K. (1984). The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature, 309(5966), 344–345.CrossRefGoogle Scholar
  80. Procaccini, A., Orlandi, A., Cavagna, A., Giardina, I., Zoratto, F., Santucci, D., et al. (2011). Propagating waves in starling, sturnus vulgaris, flocks under predation. Animal Behaviour, 82(4), 759–765.CrossRefGoogle Scholar
  81. Prokopenko, M., Lizier, J. T., Obst, O., & Wang, X. R. (2011). Relating Fisher information to order parameters. Physical Review E, 84(4), 041116.CrossRefGoogle Scholar
  82. Ragwitz, M., & Kantz, H. (2002). Markov models from data by simple nonlinear time series predictors in delay embedding spaces. Physical Review E, 65, 056201.CrossRefGoogle Scholar
  83. Razak, F. A., & Jensen, H. J. (2014). Quantifying ‘causality’ in complex systems: Understanding transfer entropy. PLOS ONE, 9(6), e99462.CrossRefGoogle Scholar
  84. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In SIGGRAPH ’87 Proceedings of the 14th annual conference on computer graphics and interactive techniques. ACM, New York, NY, USA (Vol. 21, pp. 25–34).Google Scholar
  85. Richardson, T. O., Perony, N., Tessone, C. J., Bousquet, C. A., Manser, M. B., & Schweitzer, F. (2013). Dynamical coupling during collective animal motion. arXiv:1311.1417.
  86. Riley, D. A., & Leith, C. R. (1976). Multidimensional psychophysics and selective attention in animals. Psychological Bulletin, 83(1), 138.CrossRefGoogle Scholar
  87. Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S., & Couzin, I. D. (2015). Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proceedings of the National Academy of Sciences, 112(15), 4690–4695.CrossRefGoogle Scholar
  88. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.CrossRefGoogle Scholar
  89. Smirnov, D. A. (2013). Spurious causalities with transfer entropy. Physical Review E, 87, 042917.CrossRefGoogle Scholar
  90. Stramaglia, S., Wu, G. R., Pellicoro, M., & Marinazzo, D. (2012). Expanding the transfer entropy to identify information circuits in complex systems. Physical Review E, 86, 066211.CrossRefGoogle Scholar
  91. Sumpter, D., Buhl, J., Biro, D., & Couzin, I. (2008). Information transfer in moving animal groups. Theory in Biosciences, 127(2), 177–186.CrossRefGoogle Scholar
  92. Sun, Y., Rossi, L. F., Shen, C. C., Miller, J., Wang, X. R., Lizier, J. T., et al. (2014). Information transfer in swarms with leaders. arXiv:1407.0007.
  93. Theraulaz, G., Bonabeau, E., Nicolis, S. C., Solé, R. V., Fourcassié, V., Blanco, S., et al. (2002a). Spatial patterns in ant colonies. Proceedings of the National Academy of Sciences, 99(15), 9645–9649.CrossRefMATHGoogle Scholar
  94. Theraulaz, G., Bonabeau, E., Sole, R. V., Schatz, B., & Deneubourg, J. L. (2002b). Task partitioning in a ponerine ant. Journal of Theoretical Biology, 215(4), 481–489.CrossRefGoogle Scholar
  95. Tomaru, T., Murakami, H., Niizato, T., Nishiyama, Y., Sonoda, K., Moriyama, T., et al. (2016). Information transfer in a swarm of soldier crabs. Artificial Life and Robotics, 21 (2), 177–180.Google Scholar
  96. Tunstrøm, K., Katz, Y., Ioannou, C. C., Huepe, C., Lutz, M. J., & Couzin, I. D. (2013). Collective states, multistability and transitional behavior in schooling fish. PLOS Computational Biology, 9(2), 1–11.MathSciNetCrossRefGoogle Scholar
  97. Vakorin, V. A., Krakovska, O. A., & McIntosh, A. R. (2009). Confounding effects of indirect connections on causality estimation. Journal of Neuroscience Methods, 184(1), 152–160.CrossRefGoogle Scholar
  98. Vicente, R., Wibral, M., Lindner, M., & Pipa, G. (2011). Transfer entropy—A model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1), 45–67.MathSciNetCrossRefGoogle Scholar
  99. Wang, X. R., Miller, J. M., Lizier, J. T., Prokopenko, M., & Rossi, L. F. (2012). Quantifying and tracing information cascades in swarms. PLOS ONE, 7(7), 1–7.Google Scholar
  100. Weitz, S., Blanco, S., Fournier, R., Gautrais, J., Jost, C., & Theraulaz, G. (2012). Modeling collective animal behavior with a cognitive perspective: A methodological framework. PLOS ONE, 7(6), 1–16.CrossRefGoogle Scholar
  101. Wibral, M., Lizier, J. T., & Priesemann, V. (2015). Bits from brains for biologically-inspired computing. Frontiers in Robotics and AI, 2, 5.CrossRefGoogle Scholar
  102. Wibral, M., Pampu, N., Priesemann, V., Siebenhühner, F., Seiwert, H., Lindner, M., et al. (2013). Measuring information-transfer delays. PLOS ONE, 8(2), 1–19.CrossRefGoogle Scholar
  103. Wibral, M., Vicente, R., & Lindner, M. (2014). Transfer entropy in neuroscience. In M. Wibral, R. Vicente, & J. T. Lizier (Eds.), Directed information measures in neuroscience, understanding complex systems (pp. 3–36). Berlin: Springer.CrossRefGoogle Scholar
  104. Williams, P. L., & Beer, R. D. (2011). Generalized measures of information transfer. arXiv:1102.1507.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering & ITThe University of SydneySydneyAustralia
  2. 2.School of Systems ScienceBeijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS)Université Paul Sabatier (UPS)Toulouse Cedex 9France
  4. 4.Groningen Institute for Evolutionary Life Sciences, Centre for Life SciencesUniversity of GroningenGroningenThe Netherlands
  5. 5.CSIRO Data61EppingAustralia

Personalised recommendations