Advertisement

Swarm Intelligence

, Volume 12, Issue 3, pp 245–266 | Cite as

Kilogrid: a novel experimental environment for the Kilobot robot

  • Gabriele Valentini
  • Anthony Antoun
  • Marco Trabattoni
  • Bernát Wiandt
  • Yasumasa Tamura
  • Etienne Hocquard
  • Vito Trianni
  • Marco Dorigo
Article

Abstract

We present the Kilogrid, an open-source virtualization environment and data logging manager for the Kilobot robot, Kilobot for short. The Kilogrid has been designed to extend the sensory-motor abilities of the Kilobot, to simplify the task of collecting data during experiments, and to provide researchers with a tool to fine-control the experimental setup and its parameters. Based on the design of the Kilobot and compatible with existing hardware, the Kilogrid is a modular system composed of a grid of computing nodes, or modules that provides a bidirectional communication channel between the Kilobots and a remote workstation. In this paper, we describe the hardware and software architecture of the Kilogrid system as well as its functioning to accompany its release as a new open hardware tool for the swarm robotics community. We demonstrate the capabilities of the Kilogrid using a 200-module Kilogrid, swarms of up to 100 Kilobots, and four different case studies: exploration and obstacle avoidance, site selection based on multiple gradients, plant watering, and pheromone-based foraging. Through this set of case studies, we show how the Kilogrid allows the experimenter to virtualize sensors and actuators not available to the Kilobot and to automatize the collection of data essential for the analysis of the experiments.

Keywords

Kilogrid Kilobot Swarm robotics Virtualization Automated data collection Tracking Open source 

Notes

Acknowledgements

This work was supported by the European Research Council through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (contract 246939) to Marco Dorigo. Marco Dorigo acknowledges support from the Belgian F.R.S.-FNRS, for which he is a Research Director.

References

  1. Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., & Dorigo, M. (2016). Kilogrid: a modular virtualization environment for the Kilobot robot. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3809–3814). IEEE Press.Google Scholar
  2. Arvin, F., Krajník, T., Turgut, A. E., & Yue, S. (2015a). COS\(\phi \): Artificial pheromone system for robotic swarms research. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 407–412).Google Scholar
  3. Arvin, F., Xiong, C., & Yue, S. (2015b). Colias-\(\phi \): An autonomous micro robot for artificial pheromone communication. International Journal of Mechanical Engineering and Robotics Research, 4(4), 349–353.Google Scholar
  4. Becker, A., Habibi, G., Werfel, J., Rubenstein, M., & McLurkin, J. (2013). Massive uniform manipulation: Controlling large populations of simple robots with a common input signal. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 520–527).Google Scholar
  5. Beckers, R., Holland, O.E., & Deneubourg, J. L. (1994). From local actions to global tasks: Stigmergy and collective robotics. In Artificial life IV (pp. 181–189). MIT Press.Google Scholar
  6. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRefGoogle Scholar
  7. Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., et al. (2015). The TAM: Abstracting complex tasks in swarm robotics research. Swarm Intelligence, 9(1), 1–22.CrossRefGoogle Scholar
  8. Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRefGoogle Scholar
  9. Garnier, S., Combe, M., Jost, C., & Theraulaz, G. (2013). Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed. PLoS Computational Biology, 9(3), 1–12.MathSciNetGoogle Scholar
  10. Gauci, M., Radhika, N., & Rubenstein, M. (2017). Distributed autonomous robotic systems: The 13th international symposium. Springer, chap Programmable self-disassembly for shape formation in large-scale robot collectives (in press).Google Scholar
  11. Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76(12), 579–581.CrossRefGoogle Scholar
  12. Gutiérrez, Á., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localization and local communication embodied sensor. Sensors, 8(11), 7545–7563.CrossRefGoogle Scholar
  13. Khaliq, A. A., Di Rocco, M., & Saffiotti, A. (2014). Stigmergic algorithms for multiple minimalistic robots on an RFID floor. Swarm Intelligence, 8(3), 199–225.CrossRefGoogle Scholar
  14. Khaliq, A. A., & Saffiotti, A. (2015). Stigmergy at work: Planning and navigation for a service robot on an RFID floor. In IEEE International Conference on Robotics and Automation, ICRA 2015, (pp. 1085–1092). IEEE Press.Google Scholar
  15. Liu, W., & Winfield, A. F. (2011). Open-hardware e-puck linux extension board for experimental swarm robotics research. Microprocessors and Microsystems, 35(1), 60–67.CrossRefGoogle Scholar
  16. Mathews, N., Valentini, G., Christensen, A. L., O’Grady, R., Brutschy, A., & Dorigo, M. (2015). Spatially targeted communication in decentralized multirobot systems. Autonomous Robots, 38(4), 439–457.CrossRefGoogle Scholar
  17. Melhuish, C., Welsby, J., & Edwards, C. (1999). Using templates for defensive wall building with autonomous mobile ant-like robots. In Proceedings of towards intelligent mobile robots (TIMR99), Vol. 99.Google Scholar
  18. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, P. J. D. Torres & C. M. O. Alves (Eds.), Proceedings of the 9th conference on autonomous robot systems and competitions (Vol. 1, pp. 59–65). IPCB: Instituto Politécnico de Castelo Branco.Google Scholar
  19. Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.CrossRefzbMATHGoogle Scholar
  20. Pickem, D., Wang, L., Glotfelter, P., Diaz-Mercado, Y., Mote, M., Ames, A.D., Feron, E., & Egerstedt, M. (2016). Safe, remote-access swarm robotics research on the robotarium. arXiv:1604.00640.
  21. Reina, A., Cope, A. J., Nikolaidis, E., Marshall, J. A. R., & Sabo, C. (2017). ARK: Augmented reality for kilobots. IEEE Robotics and Automation Letters, 2(3), 1755–1761.CrossRefGoogle Scholar
  22. Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M., & Birattari, M. (2015). Augmented reality for robots: Virtual sensing technology applied to a swarm of e-pucks. In 2015 NASA/ESA conference on adaptive hardware and systems (AHS) (pp. 1–6). IEEE Press.Google Scholar
  23. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014a). Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966–975.CrossRefGoogle Scholar
  24. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., & Nagpal, R. (2013). Collective transport of complex objects by simple robots: Theory and experiments. In T. Ito, C. Jonker, M. Gini & O. Shehory (Eds.), Proceedings of the 12th international conference on autonomous agents and multiagent systems, IFAAMAS, AAMAS ’13 (pp. 47–54).Google Scholar
  25. Rubenstein, M., Cornejo, A., & Nagpal, R. (2014b). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799.CrossRefGoogle Scholar
  26. Soorati, M. D., & Hamann, H. (2016). Robot self-assembly as adaptive growth process: Collective selection of seed position and self-organizing tree-structures. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5745–5750).Google Scholar
  27. Støy, K. (2001). Using situated communication in distributed autonomous mobile robotics. In Proceedings of the 7th scandinavian conference on artificial intelligence, SCAI’01 (Vol. 1, pp. 44–52). IOS Press.Google Scholar
  28. Trianni, V., De Simone, D., Reina, A., & Baronchelli, A. (2016). Emergence of consensus in a multi-robot network: From abstract models to empirical validation. IEEE Robotics and Automation Letters, 1(1), 348–353.CrossRefGoogle Scholar
  29. Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9.CrossRefGoogle Scholar
  30. Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2016). Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Autonomous Agents and Multi-Agent Systems, 30(3), 553–580.CrossRefGoogle Scholar
  31. Valentini, G., Hamann, H., & Dorigo, M. (2015). Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off. In R. Bordini, E. Elkind, G. Weiss & P. Yolum (Eds.), Proceedings of the 14th international conference on autonomous agents and multiagent systems, IFAAMAS, AAMAS ’15 (pp. 1305–1314).Google Scholar
  32. Vigelius, M., Meyer, B., & Pascoe, G. (2014). Multiscale modelling and analysis of collective decision making in swarm robotics. PLoS ONE, 9(11), e111542.CrossRefGoogle Scholar
  33. Werfel, J. (2012). Collective construction with robot swarms. In R. Doursat, H. Sayama, & O. Michel (Eds.), Morphogenetic engineering: Toward programmable complex systems (pp. 115–140). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRIDIAUniversité libre de BruxellesBrusselsBelgium
  2. 2.Beyond Center, School of Earth and Space ExplorationArizona State UniversityTempeUSA
  3. 3.Budapest University of Technology and EconomicsBudapestHungary
  4. 4.School of ComputingTokyo Institute of TechnologyTokyoJapan
  5. 5.IRT Jules VerneNantesFrance
  6. 6.ISTCConsiglio Nazionale delle RicercheRomeItaly

Personalised recommendations