Swarm Intelligence

, Volume 10, Issue 3, pp 193–210 | Cite as

Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of human–swarm interaction

  • Gaëtan Podevijn
  • Rehan O’Grady
  • Nithin Mathews
  • Audrey Gilles
  • Carole Fantini-Hauwel
  • Marco Dorigo


We study the psychophysiological state of humans when exposed to robot groups of varying sizes. In our experiments, 24 participants are exposed sequentially to groups of robots made up of 1, 3 and 24 robots. We measure both objective physiological metrics (skin conductance level and heart rate), and subjective self-reported metrics (from a psychological questionnaire). These measures allow us to analyse the psychophysiological state (stress, anxiety, happiness) of our participants. Our results show that the number of robots to which a human is exposed has a significant impact on the psychophysiological state of the human and that higher numbers of robots provoke a stronger response.


Swarm robotics Human–swarm interaction Psychophysiology 



The authors thank Mauro Birattari for his help in the construction of the experimental environment. This work was partially supported by the European Research Council through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” Contract 246939) awarded to Marco Dorigo. Rehan O’Grady and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS. The authors also thank the 24 participants who participated in the experiment.


  1. Adams, J. (2009). Multiple robot/single human interaction: Effects on perceived workload. Behaviour & Information Technology, 28(2), 183–198.CrossRefGoogle Scholar
  2. Bainbridge, W. S. (Ed.). (2004). Berkshire encyclopedia of human–computer interaction. Great Barrington, MA: Berkshire Publishing.Google Scholar
  3. Bekele, E., & Sarkar, N. (2014). Psychophysiological feedback for adaptive human–robot interaction (HRI). In S. H. Fairclough & K. Gilleade (Eds.), Advances in physiological computing (pp. 141–167). Springer.Google Scholar
  4. Bethel, C., Salomon, K., Murphy, R., & Burke, J. (2007). Survey of psychophysiology measurements applied to human–robot interaction. In Proceedings of the 16th IEEE international symposium on robot and human interactive communication (RO-MAN 2007) (pp. 732–737). New York: IEEE Press.Google Scholar
  5. Blascovich, J., Vanman, E., Mendes, W., & Dickerson, S. (2011). Social psychophysiology for social and personality psychology. Beverley Hills, CA: Sage.CrossRefGoogle Scholar
  6. Bradley, M. M., & Lang, P. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.CrossRefGoogle Scholar
  7. Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. R. Lane, L. Nadel, G. L. Ahern, J. Allen, & A. W. Kaszniak (Eds.), Cognitive neuroscience of emotion (pp. 25–49). Oxford: Oxford University Press.Google Scholar
  8. Byrne, E., & Parasuraman, R. (1996). Psychophysiology and adaptive automation. Biological Psychology, 42(3), 249–268.CrossRefGoogle Scholar
  9. De la Croix, J. P., & Egerstedt, M. (2012). Controllability characterizations of leader-based swarm interactions. In AAAI fall symposium series technical reports. AAAI.Google Scholar
  10. Dehais, F., Sisbot, E., Alami, R., & Causse, M. (2011). Physiological and subjective evaluation of a human–robot object hand-over task. Applied Ergonomics, 42(6), 785–791.CrossRefGoogle Scholar
  11. Dix, A., Finlay, J., Abowd, G., & Beale, R. (2003). Human–computer interaction (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.zbMATHGoogle Scholar
  12. Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRefGoogle Scholar
  13. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.CrossRefGoogle Scholar
  14. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., & Birattari, M. (2015). Software infrastructure for E-puck (and TAM). Technical report TR/IRIDIA/2015-004. IRIDIA, Université Libre de Bruxelles, Brussels.Google Scholar
  15. Goljar, N., Javh, M., Poje, J., Ocepek, J., Novak, D., Ziherl, J., et al. (2011). Psychophysiological responses to robot training in different recovery phases after stroke. In Proceedings of the IEEE international conference on rehabilitation robotics (ICORR’11) (pp. 1–6). New York: IEEE Press.Google Scholar
  16. Gutiérrez, Á., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localization and local communication embodied sensor. Sensors, 8(11), 7545–7563.CrossRefGoogle Scholar
  17. Humphrey, C., Henk, C., Sewell, G., Williams, B., & Adams, J. (2007). Assessing the scalability of a multiple robot interface. Proceedings of the 2nd ACM/IEEE international conference on human–robot interaction (HRI 2007) (pp. 239–246). Piscataway, NJ: IEEE Press.Google Scholar
  18. Itoh, K., Miwa, H., Nukariya, Y., Zecca, M., Takanobu, H., Roccella, S., et al. (2006). Development of a bioinstrumentation system in the interaction between a human and a robot. In IEEE/RSJ international conference on intelligent robots and systems (pp. 2620–2625). IEEE.Google Scholar
  19. Kolling, A., Sycara, K., Nunnally, S., & Lewis, M. (2013). Human swarm interaction: An experimental study of two types of interaction with foraging swarms. Journal of Human–Robot Interaction, 2(2), 103–128.Google Scholar
  20. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2016). Human interaction with robot swarms: A survey. IEEE Transaction on Human–Machine Systems, 46(1), 9–26.Google Scholar
  21. Kulic, D., Croft, E. (2005). Anxiety detection during human–robot interaction. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2005) (pp. 616–621). Los Alamitos: IEEE Computer Society Press.Google Scholar
  22. Kulic, D., & Croft, E. (2007). Affective state estimation for human–robot interaction. IEEE Transactions on Robotics, 23(5), 991–1000.CrossRefGoogle Scholar
  23. Lang, P. J. (1980). Behavioral treatment and bio-behavioral assessment: Computer applications. In J. B. Sidowski, J. H. Johnson, & T. H. Williams (Eds.), Technology in mental health care delivery systems (pp. 119–137). New York: Ablex.Google Scholar
  24. Mehrabian, A. (1996). Pleasure–arousal–dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology, 14(4), 261–292.CrossRefMathSciNetGoogle Scholar
  25. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The E-Puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous robot systems and competitions (pp. 59–65). Castelo Branco: Instituto Politècnico de Castelo Branco.Google Scholar
  26. Nagavalli, S., Chien, S., Lewis, M., Chakraborty, N., & Sycara, K. (2015). Bounds of neglect benevolence in input timing for human interaction with robotic swarms. In Proceedings of ACM/IEEE international conference on human–robot interaction (pp. 197–204). New York, NY: ACM.Google Scholar
  27. Nagi, J., Giusti, A., Gambardella, L., & Di Caro, G. A. (2014). Human–swarm interaction using spatial gestures. In Proceedings of the 27th IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3834–3841). Washington: IEEE Computer Society.Google Scholar
  28. Nagi, J., Ngo, H., Gambardella, L., & Di Caro, G. A. (2015). Wisdom of the swarm for cooperative-decision making in human–swarm interaction. In Proceedings of the IEEE international conference on robotics and automation (ICRA).Google Scholar
  29. Novak, D., Ziherl, J., Olenšek, A., Milavec, M., Podobnik, J., Mihelj, M., et al. (2010). Psychophysiological responses to robotic rehabilitation tasks in stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4), 351–361.CrossRefGoogle Scholar
  30. Nunnally, S., Walker, P., Lewis, M., Kolling, A., Chakraborty, N., & Sycara, K. (2012). Connectivity differences between human operators of swarms and bandwidth limitations. In Proceedings of the third international conference on swarm, evolutionary, and memetic computing (pp. 713–720). Berlin: Springer.Google Scholar
  31. Pendleton, B., & Goodrich, M. (2013). Scalable human interaction with robotic swarms. In Proceedings of the AIAA Infotech@Aerospace conference (pp. 633–645). Reston, VA: American Institute of Aeronautics and Astronautics.Google Scholar
  32. Podevijn, G., O’Grady, R., Nashed, Y., & Dorigo, M. (2013). Gesturing at subswarms: Towards direct human control of robot swarms. In A, Natraj, S. Cameron, C. Melhuish, & M. Witkowski (Eds.), Towards autonomous robotic systems—14th annual conference, TAROS 2013, Lecture notes in computer science (Vol. 8069, pp. 390–403). Berlin: Springer.Google Scholar
  33. Prinzel, L., Freeman, F., Scerbo, M., Mikulka, P., & Pope, A. (2000). A closed-loop system for examining psychophysiological measures for adaptive task allocation. The International Journal of Aviation Psychology, 10(4), 393–410.CrossRefGoogle Scholar
  34. Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., & Pope, A. T. (2003). Effects of a psychophysiological system for adaptive automation on performance, workload, and the event-related potential P300 component. Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(4), 601–614.CrossRefGoogle Scholar
  35. R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  36. Rani, P., & Sarkar, N. (2005). Making robots emotion-sensitive—Preliminary experiments and results. In IEEE international workshop on robot and human interactive communication (pp. 1–6). Piscataway: IEEE.Google Scholar
  37. Rani, P., Sarkar, N., Smith, C. A., & Kirby, L. (2004). Anxiety detecting robotic system-towards implicit human–robot collaboration. Robotica, 22(01), 85–95.CrossRefGoogle Scholar
  38. Salvendy, G. (2012). Handbook of human factors and ergonomics. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  39. Setter, T., Fouraker, A., Kawashima, H., & Egerstedt, M. (2015). Haptic interactions with multi-robot swarms using manipulability. Journal of Human–Robot Interaction, 4(1), 60–74.Google Scholar
  40. Swangnetr, M., & Kaber, D. (2013). Emotional state classification in patient–robot interaction using wavelet analysis and statistics-based feature selection. IEEE Transactions on Human–Machine Systems, 43(1), 63–75.CrossRefGoogle Scholar
  41. Swangnetr, M., Zhu, B., Taylor, K., & Kaber, D. (2010). Assessing the effects of humanoid robot features on patient emotion during a medicine delivery task. In Proceedings of the Human Factors and Ergonomics Society annual meeting (pp. 349–353). London: Sage.Google Scholar
  42. Tiberio, L., Cesta, A., Cortellessa, G., Padua, L., & Pellegrino, A. (2012). Assessing affective response of older users to a telepresence robot using a combination of psychophysiological measures. In Proceedings of the 21st IEEE symposium on robot and human interactive communication (RO-MAN) (pp 833–838). New York: IEEE Press.Google Scholar
  43. Ting, C., Mahfouf, M., Nassef, A., Linkens, D., Panoutsos, G., Nickel, P., et al. (2010). Real-time adaptive automation system based on identification of operator functional state in simulated process control operations. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(2), 251–262.CrossRefGoogle Scholar
  44. Tullis, T., & Albert, W. (2008). Measuring the user experience: Collecting, analyzing, and presenting usability metrics. San Francisco, CA: Morgan Kaufmann.Google Scholar
  45. Velagapudi, P., Scerri, P., Sycara, K., Wang, H., Lewis, M., & Wang, J. (2008). Scaling effects in multi-robot control. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2008) (pp. 2121–2126). Los Alamitos: IEEE Computer Society Press.Google Scholar
  46. Zhang, T., Kaber, D., Zhu, B., Swangnetr, M., Mosaly, P., & Hodge, L. (2010). Service robot feature design effects on user perceptions and emotional responses. Intelligent service robotics, 3(2), 73–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Gaëtan Podevijn
    • 1
  • Rehan O’Grady
    • 1
  • Nithin Mathews
    • 1
  • Audrey Gilles
    • 2
  • Carole Fantini-Hauwel
    • 2
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité libre de BruxellesBrusselsBelgium
  2. 2.Research Centre of Clinical Psychology, Psychopathology and PsychosomaticUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations