Swarm Intelligence

, Volume 9, Issue 2–3, pp 125–152 | Cite as

AutoMoDe-Chocolate: automatic design of control software for robot swarms

  • Gianpiero Francesca
  • Manuele Brambilla
  • Arne Brutschy
  • Lorenzo Garattoni
  • Roman Miletitch
  • Gaëtan Podevijn
  • Andreagiovanni Reina
  • Touraj Soleymani
  • Mattia Salvaro
  • Carlo Pinciroli
  • Franco Mascia
  • Vito Trianni
  • Mauro Birattari
Article

Abstract

We present two empirical studies on the design of control software for robot swarms. In Study A, Vanilla and EvoStick, two previously published automatic design methods, are compared with human designers. The comparison is performed on five swarm robotics tasks that are different from those on which Vanilla and EvoStick have been previously tested. The results show that, under the experimental conditions considered, Vanilla performs better than EvoStick, but it is not able to outperform human designers. The results indicate that Vanilla ’s weak element is the optimization algorithm employed to search the space of candidate designs. To improve over Vanilla and with the final goal of obtaining an automatic design method that performs better than human designers, we introduce Chocolate, which differs from Vanilla only in the fact that it adopts a more powerful optimization algorithm. In Study B, we perform an assessment of Chocolate. The results show that, under the experimental conditions considered, Chocolate outperforms both Vanilla and the human designers. Chocolate is the first automatic design method for robot swarms that, at least under specific experimental conditions, is shown to outperform a human designer.

Keywords

Swarm robotics Automatic design AutoMoDe 

References

  1. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A. L., & Dorigo, M. (2009). Evolving self-assembly in autonomous homogeneous robots: Experiments with two physical robots. Artificial Life, 15(4), 465–484.CrossRefGoogle Scholar
  2. Balaprakash, P., Birattari, M., & Stützle, T. (2007). Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement. Hybrid metaheuristics, HM 2007, LNCS (Vol. 4771, pp. 108–122). Berlin: Springer.Google Scholar
  3. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007). Self-organised coordinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man and Cybernetics-Part B, 37(1), 224–239.CrossRefGoogle Scholar
  4. Berman, S., Kumar, V., & Nagpal, R. (2011). Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. International conference on robotics and automation, ICRA 2011 (pp. 378–385). Piscataway, NJ: IEEE Press.Google Scholar
  5. Birattari, M. (2009). Tuning metaheuristics. Berlin: Springer.CrossRefMATHGoogle Scholar
  6. Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Langdon, et al. (Eds.), Genetic and evolutionary computation, GECCO (pp. 11–18). San Francisco, CA: Morgan Kaufmann.Google Scholar
  7. Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In T. Bartz-Beielstein, et al. (Eds.), Experimental methods for the analysis of optimization algorithms (pp. 311–336). Berlin: Springer.CrossRefGoogle Scholar
  8. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRefGoogle Scholar
  9. Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for swarm robotics: A design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4), 17.1–28.Google Scholar
  10. Bredeche, N., Montanier, J. M., Liu, W., & Winfield, A. F. (2012). Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Mathematical and Computer Modelling of Dynamical Systems, 18(1), 101–129.CrossRefMATHGoogle Scholar
  11. Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods for data analysis. Pacific Grove, CA: Wadsworth & Brooks/Cole.MATHGoogle Scholar
  12. Conover, W. J. (1999). Practical nonparametric statistics. New York: Wiley.Google Scholar
  13. Di Mario, E., & Martinoli, A. (2014). Distributed particle swarm optimization for limited-time adaptation with real robots. Robotica, 32(2), 193–208.CrossRefGoogle Scholar
  14. Doncieux, S., & Mouret, J. B. (2014). Beyond black-box optimization: A review of selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2), 71–93.CrossRefGoogle Scholar
  15. Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRefGoogle Scholar
  16. Duarte, M., Oliveira, S. M., & Christensen, A. L. (2014a). Evolution of hierarchical controllers for multirobot systems. In H. Sayama, et al. (Eds.), Artificial life 14: Proceedings of the international conference on the synthesis and simulation of living systems (pp. 657–664). Cambridge, MA: MIT Press.Google Scholar
  17. Duarte, M., Oliveira, S. M., & Christensen, A. L. (2014b). Evolution of hybrid robotic controllers for complex tasks. Journal of Intelligent & Robotic Systems, 78(3–4), 463–484.Google Scholar
  18. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., & Birattari, M. (2012). Analysing an evolved robotic behaviour using a biological model of collegial decision making. In From animals to animats 12, LNAI (Vol. 7426, pp. 381–390). Berlin: Springer.Google Scholar
  19. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). AutoMoDe-chocolate: Automatic design of control software for robot swarms. Supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2014-011.
  20. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014b). An experiment in automatic design of robot swarms. In M. Dorigo, et al. (Eds.), Swarm intelligence, ANTS 2014, LNCS (Vol. 8667, pp. 25–37). Berlin: Springer.Google Scholar
  21. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014c). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.CrossRefGoogle Scholar
  22. Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014a). Clustering objects with robots that do not compute. In A. Lomuscio, et al. (Eds.), Autonomous agents and multiagent systems, AAMAS 2014 (pp. 421–428). SC: IFAAMAS, Richland.Google Scholar
  23. Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014b). Self-organized aggregation without computation. International Journal of Robotics Research, 33(8), 1145–1161.CrossRefGoogle Scholar
  24. Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1–58.CrossRefGoogle Scholar
  25. Gomes, J., Urbano, P., & Christensen, A. L. (2013). Evolution of swarm robotics systems with novelty search. Swarm Intelligence, 7(2–3), 115–144.CrossRefGoogle Scholar
  26. Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13.CrossRefGoogle Scholar
  27. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., & Magdalena, L. (2009). Open e-puck range and bearing miniaturized board for local communication in swarm robotics. In International conference on robotics and automation, ICRA 2009 (pp. 3111–3116). Piscataway, NJ: IEEE Press.Google Scholar
  28. Haasdijk, E., Bredeche, N., & Eiben, A. E. (2014). Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. PLoS ONE, 9(6), e98,466.CrossRefGoogle Scholar
  29. Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2), 209–239.CrossRefGoogle Scholar
  30. Hauert, S., Zufferey, J. C., & Floreano, D. (2008). Evolved swarming without positioning information: An application in aerial communication relay. Autonomous Robots, 26(1), 21–32.CrossRefGoogle Scholar
  31. Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., & Moses, M. E. (2012) Formica ex machina: Ant swarm foraging from physical to virtual and back again. In Dorigo M, et al. (Eds.), Swarm intelligence, ANTS 2012, LNCS (Vol. 7461, pp. 252–259). Berlin: Springer.Google Scholar
  32. Hsieh, M., Loizou, S., & Kumar, V. (2007). Stabilization of multiple robots on stable orbits via local sensing. In International conference on robotics and automation, ICRA 2007 (pp. 2312–2317). Piscataway, NJ: IEEE Press.Google Scholar
  33. Izzo, D., Simões, L. F., & de Croon, G. C. H. E. (2014). An evolutionary robotics approach for the distributed control of satellite formations. Evolutionary Intelligence, 7(2), 107–118.CrossRefGoogle Scholar
  34. Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolutionary robotics. In Advances in artificial life, ECAL’95, LNCS (Vol. 929, pp. 704–720). Berlin: Springer.Google Scholar
  35. Kazadi, S., Lee, J. R., & Lee, J. (2007). Artificial physics, swarm engineering, and the Hamiltonian method. In World congress on engineering and computer science (pp. 623–632). Hong Kong: Newswood.Google Scholar
  36. König, L., & Mostaghim, S. (2009). Decentralized evolution of robotic behavior using finite state machines. International Journal of Intelligent Computing and Cybernetics, 2(4), 695–723.MathSciNetCrossRefMATHGoogle Scholar
  37. Koos, S., Mouret, J., & Doncieux, S. (2013). The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation, 17(1), 122–145.CrossRefGoogle Scholar
  38. Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation, 19(2), 189–223.CrossRefGoogle Scholar
  39. Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13(2), 127–141.CrossRefMATHGoogle Scholar
  40. Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7(4), 375–393.CrossRefGoogle Scholar
  41. Lopes, Y., Leal, A., Dodd, T. J., & Groß, R. (2014). Application of supervisory control theory to swarms of e-puck and kilobot robots. In M. Dorigo, et al. (Eds.), Swarm Intelligence, ANTS 2014, LNCS (Vol. 8667, pp. 62–73). Berlin: Springer.Google Scholar
  42. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The irace package, iterated race for automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.Google Scholar
  43. Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63.CrossRefGoogle Scholar
  44. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–436.CrossRefGoogle Scholar
  45. Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturization: A tool for investigation in control algorithms. In T. Yoshikawa & F. Miyazaki (Eds.), Experimental robotics III (pp. 501–513). Berlin, Germany: Springer.Google Scholar
  46. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In 9th Conference on autonomous robot systems and competitions, Instituto Politécnico de Castelo Branco, Portugal, (pp. 59–65).Google Scholar
  47. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.CrossRefGoogle Scholar
  48. Pugh, J., & Martinoli, A. (2009). Distributed scalable multi-robot learning using particle swarm optimization. Swarm Intelligence, 3(3), 203–222.CrossRefGoogle Scholar
  49. Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2003). Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 361(1811), 2321–2343.MathSciNetCrossRefGoogle Scholar
  50. R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  51. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014). Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966–975.CrossRefGoogle Scholar
  52. Sartoretti, G., Hongler, M. O., de Oliveira, M. E., & Mondada, F. (2014). Decentralized self-selection of swarm trajectories: From dynamical systems theory to robotic implementation. Swarm Intelligence, 8(4), 329–351.CrossRefGoogle Scholar
  53. Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A., et al. (2013). IRIDIA’s arena tracking system. Technical report TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Belgium.Google Scholar
  54. Trianni, V. (2008). Evolutionary swarm robotics. Berlin: Springer.CrossRefGoogle Scholar
  55. Trianni, V. (2014). Evolutionary robotics: Model or design? Frontiers in Robotics and AI, 1(13), 1–6.Google Scholar
  56. Trianni, V., & López-Ibáñez, M. (2014). Advantages of multi-objective optimisation in evolutionary robotics: Survey and case studies. Technical report TR/IRIDIA/2014-014, IRIDIA, Université Libre de Bruxelles, Belgium.Google Scholar
  57. Trianni, V., & Nolfi, S. (2009). Self-organising sync in a robotic swarm. A dynamical system view. IEEE Transactions on Evolutionary Computation, 13(4), 722–741.CrossRefGoogle Scholar
  58. Trianni, V., & Nolfi, S. (2011). Engineering the evolution of self-organizing behaviors in swarm robotics: A case study. Artificial Life, 17(3), 183–202.CrossRefGoogle Scholar
  59. Tuci, E., Ferrauto, T., Zeschel, A., Massera, G., & Nolfi, S. (2011). An experiment on behavior generalization and the emergence of linguistic compositionality in evolving robots. IEEE Transactions on Autonomous Mental Development, 3(2), 176–189.CrossRefGoogle Scholar
  60. Watson, R., Ficici, S. G., & Pollack, J. (2002). Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems, 39(1), 1–18.CrossRefGoogle Scholar
  61. Winfield, A. F. T., & Erbas, M. D. (2011). On embodied memetic evolution and the emergence of behavioural traditions in robots. Memetic Computing, 3(4), 261–270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gianpiero Francesca
    • 1
  • Manuele Brambilla
    • 1
  • Arne Brutschy
    • 1
  • Lorenzo Garattoni
    • 1
  • Roman Miletitch
    • 1
  • Gaëtan Podevijn
    • 1
  • Andreagiovanni Reina
    • 1
  • Touraj Soleymani
    • 1
    • 2
  • Mattia Salvaro
    • 1
    • 3
  • Carlo Pinciroli
    • 1
    • 4
  • Franco Mascia
    • 1
  • Vito Trianni
    • 5
  • Mauro Birattari
    • 1
  1. 1.IRIDIAUniversité libre de BruxellesBrusselsBelgium
  2. 2.ITRTechnische Universität MünchenMunichGermany
  3. 3.Alma Mater Studiorum – Università di BolognaBolognaItaly
  4. 4.MIST, École Polytechnique de MontréalMontrealCanada
  5. 5.ISTC-CNRRomeItaly

Personalised recommendations