Swarm Intelligence

, Volume 9, Issue 1, pp 43–70 | Cite as

Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms

  • Joshua P. HeckerEmail author
  • Melanie E. Moses


For robot swarms to operate outside of the laboratory in complex real-world environments, they require the kind of error tolerance, flexibility, and scalability seen in living systems. While robot swarms are often designed to mimic some aspect of the behavior of social insects or other organisms, no systems have yet addressed all of these capabilities in a single framework. We describe a swarm robotics system that emulates ant behaviors, which govern memory, communication, and movement, as well as an evolutionary process that tailors those behaviors into foraging strategies that maximize performance under varied and complex conditions. The system evolves appropriate solutions to different environmental challenges. Solutions include the following: (1) increased communication when sensed information is reliable and resources to be collected are highly clustered, (2) less communication and more individual memory when cluster sizes are variable, and (3) greater dispersal with increasing swarm size. Analysis of the evolved behaviors reveals the importance of interactions among behaviors, and of the interdependencies between behaviors and environments. The effectiveness of interacting behaviors depends on the uncertainty of sensed information, the resource distribution, and the swarm size. Such interactions could not be manually specified, but are effectively evolved in simulation and transferred to physical robots. This work is the first to demonstrate high-level robot swarm behaviors that can be automatically tuned to produce efficient collective foraging strategies in varied and complex environments.


Swarm robotics Biologically inspired computation Central-place foraging Genetic algorithms Agent-based models 



This work is supported by NSF Grant EF-1038682, DARPA CRASH Grant P-1070-113237, and a James S. McDonnell Foundation Complex Systems Scholar Award. We gratefully acknowledge members of the Biological Computation Lab: Karl Stolleis, Bjorn Swenson, Justin Carmichael, Kenneth Letendre, and Neal Holtschulte, for their assistance with the iAnt swarm robotics project. We also thank Deborah Gordon for illuminating discussions about seed-harvesting ant behaviors, Alan Winfield for discussions about swarm foraging problems, and Lydia Tapia and Stephanie Forrest for constructive feedback on this manuscript.

Supplementary material

11721_2015_104_MOESM1_ESM.pdf (66 kb)
Supplementary material 1 (pdf 65 KB)


  1. Adler, F. R., & Gordon, D. M. (2003). Optimization, conflict, and nonoverlapping foraging ranges in ants. The American Naturalist, 162(5), 529–543.CrossRefGoogle Scholar
  2. Ampatzis, C. (2008). On the evolution of autonomous time-based decision-making and communication in collective robotics. PhD thesis, Université libre de Bruxelles.Google Scholar
  3. Aron, S., Pasteels, J. M., & Deneubourg, J. L. (1989). Trail-laying behaviour during exploratory recruitment in the Argentine ant, Iridomyrmex humilis (Mayr). Biology of Behavior, 14, 207–217.Google Scholar
  4. Balch, T. (1999). Reward and diversity in multirobot foraging. In IJCAI-99 workshop on agents learning about, from and with other agents (pp. 92–99). San Francisco, CA: Morgan Kauffman Publishers.Google Scholar
  5. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007). Self-organized coordinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 37(1), 224–239.CrossRefGoogle Scholar
  6. Beckers, R., Goss, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Colony size, communication, and ant foraging strategy. Psyche, 96(3–4), 239–256.CrossRefGoogle Scholar
  7. Berman, S., Lindsey, Q., Sakar, M. S., Kumar, V., & Pratt, S. C. (2011). Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proceedings of the IEEE, 99(9), 1470–1481.CrossRefGoogle Scholar
  8. Beverly, B. D., McLendon, H., Nacu, S., Holmes, S., & Gordon, D. M. (2009). How site fidelity leads to individual differences in the foraging activity of harvester ants. Behavioral Ecology, 20(3), 633–638.CrossRefGoogle Scholar
  9. Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology & Evolution, 12(5), 188–193.CrossRefGoogle Scholar
  10. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York, NY: Oxford University Press.zbMATHGoogle Scholar
  11. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRefGoogle Scholar
  12. Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton, NJ: Princeton University Press.Google Scholar
  13. Cao, Y. U., Fukunaga, A. S., & Kahng, A. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4(1), 7–27.CrossRefGoogle Scholar
  14. Connelly, B. D., McKinley, P. K., & Beckmann, B. E. (2009). Evolving cooperative pheromone usage in digital organisms. In IEEE symposium on Artificial Life (ALife ’09) (pp. 184–191). Piscataway, NJ: IEEE Press.Google Scholar
  15. Crist, T. O., & Haefner, J. W. (1994). Spatial model of movement and foraging in harvester ants (Pogonomyrmex) (II): The roles of environment and seed dispersion. Journal of Theoretical Biology, 166(3), 315–323.CrossRefGoogle Scholar
  16. Crist, T. O., & MacMahon, J. A. (1991). Individual foraging components of harvester ants: Movement patterns and seed patch fidelity. Insectes Sociaux, 38(4), 379–396.CrossRefGoogle Scholar
  17. Dartel, M. V., Postma, E., van den Herik, J., & de Croon, G. (2004). Macroscopic analysis of robot foraging behaviour. Connection Science, 16(3), 169–181.CrossRefGoogle Scholar
  18. Fewell, J. H. (1990). Directional fidelity as a foraging constraint in the western harvester ant, Pogonomyrmex occidentalis. Oecologia, 82, 45–51.CrossRefGoogle Scholar
  19. Flanagan, T. P., Letendre, K., Burnside, W., Fricke, G. M., & Moses, M. (2011). How ants turn information into food. In 2011 IEEE symposium on artificial life (ALIFE 2011) (pp. 178–185). Piscataway, NJ: IEEE Press.Google Scholar
  20. Flanagan, T. P., Letendre, K., Burnside, W. R., Fricke, G. M., & Moses, M. E. (2012). Quantifying the effect of colony size and food distribution on harvester ant foraging. PLoS ONE, 7(7), e39,427.CrossRefGoogle Scholar
  21. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.CrossRefGoogle Scholar
  22. Garnier, S. (2011). From ants to robots and back: How robotics can contribute to the study of collective animal behavior. Bio-Inspired Self-Organizing Robotic Systems, 355, 105–120.CrossRefGoogle Scholar
  23. Gordon, D. M. (1983). The relation of recruitment rate to activity rhythms in the harvester ant, Pogonomyrmex barbatus (F. Smith) (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 56(3), 277–285.Google Scholar
  24. Gordon, D. M. (2002). The regulation of foraging activity in red harvester ant colonies. The American Naturalist, 159(5), 509–518.CrossRefGoogle Scholar
  25. Gordon, D. M., & Kulig, A. W. (1996). Founding, foraging, and fighting: Colony size and the spatial distribution of harvester ant nests. Ecology, 77(8), 2393–2409.CrossRefGoogle Scholar
  26. Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76(12), 579–581.CrossRefGoogle Scholar
  27. Haasdijk, E., Eiben, A., & Winfield, A. F. T. (2010). Individual, social and evolutionary adaptation in collective systems. In Handbook of collective robotics: Fundamentals and challenges (pp. 295–336). Singapore: Pan Stanford Publishing.Google Scholar
  28. Hecker, J. P., & Moses, M. E. (2013). An evolutionary approach for robust adaptation of robot behavior to sensor error. In Proceedings of the 15th annual conference companion on genetic and evolutionary computation (GECCO ’13 Companion) (pp. 1437–1444). New York, NY: ACM.Google Scholar
  29. Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., & Moses, M. E. (2012). Formica ex machina: Ant swarm foraging from physical to virtual and back again. In Swarm intelligence: 8th international conference, ANTS 2012 (pp. 252–259). Berlin: Springer.Google Scholar
  30. Hecker, J. P., Stolleis, K., Swenson, B., Letendre, K., & Moses, M. E. (2013). Evolving error tolerance in biologically-inspired iAnt robots. In Proceedings of the Twelfth European conference on the synthesis and simulation of living systems (advances in artificial Life, ECAL 2013) (pp. 1025–1032). Cambridge, MA: MIT Press.Google Scholar
  31. Hoff, N., Wood, R., & Nagpal, R. (2010). Distributed colony-level algorithm switching for robot swarm foraging. In Distributed autonomous robotic systems: The 10th international symposium (pp. 417–430). New York, NY: Springer.Google Scholar
  32. Hölldobler, B. (1976). Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behavioral Ecology and Sociobiology, 1(1), 3–44.CrossRefGoogle Scholar
  33. Hölldobler, B., & Wilson, E. O. (1978). The multiple recruitment systems of the African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 60(1), 19–60.CrossRefGoogle Scholar
  34. Jackson, D. E., Martin, S. J., Ratnieks, F. L., & Holcombe, M. (2007). Spatial and temporal variation in pheromone composition of ant foraging trails. Behavioral Ecology, 18(2), 444–450.CrossRefGoogle Scholar
  35. Johnson, A. R., Wiens, J. A., Milne, B. T., & Crist, T. O. (1992). Animal movements and population dynamics in heterogeneous landscapes. Landscape Ecology, 7(1), 63–75.CrossRefGoogle Scholar
  36. Kazadi, S. (2000). Swarm engineering. PhD thesis, California Institute of Technology.Google Scholar
  37. Labella, T. H., Dorigo, M., & Deneubourg, J. L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.CrossRefGoogle Scholar
  38. Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13(2), 127–141.CrossRefzbMATHGoogle Scholar
  39. Letendre, K., & Moses, M. E. (2013). Synergy in ant foraging strategies: Memory and communication alone and in combination. In Proceedings of the 15th annual conference companion on genetic and evolutionary computation (GECCO ’13 Companion) (pp. 41–48). New York, NY: ACM.Google Scholar
  40. Liu, W., & Winfield, A. F. T. (2010). Modelling and optimisation of adaptive foraging in swarm robotic systems. The International Journal of Robotics Research, 29(14), 1743–1760.CrossRefGoogle Scholar
  41. Liu, W., Winfield, A. F. T., & Sa, J. (2007). Modelling swarm robotic systems: A case study in collective foraging. In Towards autonomous robotic systems (TAROS 07) (Vol. 23, pp. 25–32). Aberystwyth: University of Wales.Google Scholar
  42. Matarić, M. J. (1992). Minimizing complexity in controlling a mobile robot population. In 1992 IEEE international conference on robotics and automation (pp. 830–835). Piscataway, NJ: IEEE Press.Google Scholar
  43. Matarić, M. J. (1997). Behaviour-based control: Examples from navigation, learning, and group behavior. Journal of Experimental & Theoretical Artificial Intelligence, 9(2–3), 323–336.CrossRefGoogle Scholar
  44. Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Autonomous Robots, 4, 73–83.CrossRefGoogle Scholar
  45. Meyer, J. A., Husbands, P., & Harvey, I. (1998). Evolutionary robotics: A survey of applications and problems. In Evolutionary robotics: First European workshop, EvoRobot98 (pp. 1–22). Berlin: Springer.Google Scholar
  46. Moses, M., Flanagan, T. P., Letendre, K., & Fricke, M. (2013). Ant colonies as a model of human computation. In Handbook of human computation (pp. 25–37). New York, NY: Springer.Google Scholar
  47. Moses, M. E., Hecker, J. P., & Stolleis, K. (2014). The iAnt project.
  48. Müller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences, 85(14), 5287–5290.CrossRefGoogle Scholar
  49. Nelson, A. L., Barlow, G. J., & Doitsidis, L. (2009). Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4), 345–370.CrossRefGoogle Scholar
  50. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.Google Scholar
  51. Parker, L. E. (2009). Path planning and motion coordination in multiple mobile robot teams. In Encyclopedia of complexity and system science (pp. 5783–5800). New York, NY: Springer.Google Scholar
  52. Payton, D., Daily, M., Hoff, B., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.CrossRefzbMATHGoogle Scholar
  53. Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318(5853), 1088–1093.CrossRefGoogle Scholar
  54. Pini, G., & Tuci, E. (2008). On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: An evolutionary approach. Connection Science, 20(2–3), 211–230.CrossRefGoogle Scholar
  55. Prabhakar, B., Dektar, K. N., & Gordon, D. M. (2012). The regulation of ant colony foraging activity without spatial information. PLoS Computational Biology, 8(8), e1002,670.CrossRefMathSciNetGoogle Scholar
  56. Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. Swarm Robotics, 3342, 10–20.Google Scholar
  57. Sauter, J. A., Matthews, R., Van Dyke Parunak, H., & Brueckner, S. (2002). Evolving adaptive pheromone path planning mechanisms. In Proceedings of the first international conference on autonomous agents and multi-agent systems (AAMAS ’02) (pp. 434–440). New York, NY: ACM.Google Scholar
  58. Sumpter, D. J. T., & Beekman, M. (2003). From nonlinearity to optimality: Pheromone trail foraging by ants. Animal Behaviour, 66(2), 273–280.CrossRefGoogle Scholar
  59. Thiélin-Bescond, M., & Beugnon, G. (2005). Vision-independent odometry in the ant Cataglyphis cursor. Naturwissenschaften, 92(4), 193–197.CrossRefGoogle Scholar
  60. Trianni, V., & Dorigo, M. (2006). Self-organisation and communication in groups of simulated and physical robots. Biological Cybernetics, 95(3), 213–231.CrossRefzbMATHGoogle Scholar
  61. Tschinkel, W. R., & Howard, D. F. (1983). Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behavioral Ecology and Sociobiology, 12(2), 103–113.CrossRefGoogle Scholar
  62. Turner, M. G. (1989). Landscape ecology: The effect of pattern on process. Annual Review of Ecology and Systematics, 20, 171–197.CrossRefGoogle Scholar
  63. Webb, B. (2008). Using robots to understand animal behavior. Advances in the Study of Behavior, 38, 1–58.CrossRefGoogle Scholar
  64. Wiens, J. A., Stenseth, N. C., Horne, B. V., & Ims, R. A. (1993). Ecological mechanisms and landscape ecology. Oikos, 66(3), 369–380.CrossRefGoogle Scholar
  65. Wilby, A., & Shachak, M. (2000). Harvester ant response to spatial and temporal heterogeneity in seed availability: Pattern in the process of granivory. Oecologia, 125(4), 495–503.CrossRefGoogle Scholar
  66. Wilson, E. O. (1962). Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 1. The organization of mass-foraging. Animal Behaviour, 10(1), 134–147.Google Scholar
  67. Winfield, A. F. T. (2009). Foraging robots. In Encyclopedia of complexity and systems science (pp. 3682–3700). New York, NY: Springer.Google Scholar
  68. Winfield, A. F. T., Harper, C. J., & Nembrini, J. (2005). Towards dependable swarms and a new discipline of swarm engineering. Swarm Robotics, 3342, 126–142.Google Scholar
  69. Wohlgemuth, S., Ronacher, B., & Wehner, R. (2001). Ant odometry in the third dimension. Nature, 411(6839), 795–798.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of BiologyUniversity of New MexicoAlbuquerqueUSA
  3. 3.External FacultySanta Fe InstituteSanta FeUSA

Personalised recommendations