Swarm Intelligence

, Volume 9, Issue 1, pp 1–22 | Cite as

The TAM: abstracting complex tasks in swarm robotics research

  • Arne Brutschy
  • Lorenzo Garattoni
  • Manuele Brambilla
  • Gianpiero Francesca
  • Giovanni Pini
  • Marco Dorigo
  • Mauro Birattari
Article

Abstract

Research in swarm robotics focuses mostly on how robots interact and cooperate to perform tasks, rather than on the details of task execution. As a consequence, researchers often consider abstract tasks in their experimental work. For example, foraging is often studied without physically handling objects: the retrieval of an object from a source to a destination is abstracted into a trip between the two locations—no object is physically transported. Despite being commonly used, so far task abstraction has only been implemented in an ad hoc fashion. In this paper, we propose a new approach to abstracting complex tasks in swarm robotics research. This approach is based on a physical device called the “task abstraction module” (TAM) that abstracts single-robot tasks to be performed by an e-puck robot. A complex multi-robot task can be abstracted using a group of TAMs by first modeling the task as the set of its constituent single-robot subtasks and then abstracting each subtask with a TAM. We present a collection of tools for modeling complex tasks, and a framework for controlling a group of TAMs such that the behavior of the group implements the model of the task. The TAM enables research on cooperative behaviors and complex tasks with simple, cost-effective robots such as the e-puck—research that would be difficult and costly to conduct using specialized robots or ad hoc task abstraction. We demonstrate how to abstract a complex task with multiple TAMs in an example scenario involving a swarm of e-puck robots.

Keywords

Swarm robotics Task abstraction Swarm intelligence Robotics 

Notes

Acknowledgments

The authors would like to thank Álvaro Gutiérrez and Manuel Castillo-Cagigal for their help with designing the electronics of the TAM. The research leading to the results presented in this paper has received funding through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (ERC Grant Agreement No. 246939). Arne Brutschy, Manuele Brambilla, Marco Dorigo, and Mauro Birattari acknowledge support from the Belgian F.R.S.—FNRS of Belgium’s Wallonia-Brussels Federation.

References

  1. Acerbi, A., Marocco, D., & Nolfi, S. (2007). Social facilitation on the development of foraging behaviors in a population of autonomous robots. In F. Almeida e Costa, L. Rocha, E. Costa, I. Harvey, & A. Coutinho (Eds.), Advances in artificial life (Vol. 4648, pp. 625–634)., Lecture notes in computer science Berlin: Springer.CrossRefGoogle Scholar
  2. Banzi, M. (2008). Getting started with Arduino. Sebastopol, CA: O’Reilly Media.Google Scholar
  3. Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears (Eds.), Swarm robotics (Vol. 3342, pp. 1–9)., Lecture notes in computer science Berlin: Springer.CrossRefGoogle Scholar
  4. Berman, S., Halász, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937.CrossRefGoogle Scholar
  5. Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for robot swarms: A design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4), 17:1–17:28.Google Scholar
  6. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.CrossRefGoogle Scholar
  7. Brutschy, A. (2014). The TAM: A device for task abstraction in swarm robotics research. Technical Report TR/IRIDIA/2010-015.005, Belgium: IRIDIA, Université Libre de Bruxelles.Google Scholar
  8. Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., & Birattari, M. (2013). The TAM: Abstracting complex tasks in swarm robotics research—supplementary online material. Retrieved from http://iridia.ulb.ac.be/supp/IridiaSupp2012-002/.
  9. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1), 101–125.CrossRefGoogle Scholar
  10. Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A., et al. (2012). Costs and benefits of behavioral specialization. Robotics and Autonomous Systems, 60(11), 1408–1420.CrossRefGoogle Scholar
  11. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2011). Self-organized discrimination of resources. PLoS One, 6(5), e19888.CrossRefGoogle Scholar
  12. Castillo-Cagigal, M., Brutschy, A., Gutiérrez, Á., & Birattari, M. (2014). Temporal task allocation in periodic environments: An approach based on synchronization (Vol. 8667). InProceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 182–193). Lecture Notes in Computer Science Berlin/Heidelberg, Germany: Springer.Google Scholar
  13. Donald, B. R., Jennings, J., & Rus, D. (1997). Information invariants for distributed manipulation. The International Journal of Robotics Research, 16(5), 673–702.CrossRefGoogle Scholar
  14. Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRefGoogle Scholar
  15. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.CrossRefGoogle Scholar
  16. Fontan, M. S., & Matarić, M. J. (1996). A study of territoriality: The role of critical mass in adaptive task division. In P. Maes, M. J. Matarić, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the Fourth International Conference of Simulation of Adaptive Behavior (pp. 553–561). Cambridge, MA: MIT Press.Google Scholar
  17. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). An experiment in automatic design of robot swarms: AutoMoDe-Vanilla, EvoStick, and human experts (Vol. 8667). In M. Dorigo, M. Birattari, S. Garnier, H. H. M. M. de Oca, C. Solnon, & T. Stützle (Eds.), Proceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 25–37). Lecture Notes in Computer Science, Springer: Berlin/Heidelberg, Germany.Google Scholar
  18. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014b). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.CrossRefGoogle Scholar
  19. Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014). Self-organized aggregation without computation. The International Journal of Robotics Research, 33(8), 1145–1161.CrossRefGoogle Scholar
  20. Goldberg, D., & Matarić, M. J. (2002). Design and evaluation of robust behavior-based controllers. In T. Balch & L. E. Parker (Eds.), Robot teams: from diversity to polymorphism (pp. 315–344). Natick, MA: A. K. Peters.Google Scholar
  21. Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13.CrossRefGoogle Scholar
  22. Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localisation and local communication embodied sensor. Sensors, 11(8), 7545–7563.CrossRefGoogle Scholar
  23. Ijspeert, A. J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots, 11(2), 149–171.CrossRefMATHGoogle Scholar
  24. Jakobi, N., Husbands, A., & P., & A. Harvey, I., (1995). Noise and the reality gap: The use of simulation in evolutionary robotics (Vol. 929). In F. Morán, A. Moreno, J. J. Merelo, & P. Chacón (Eds.), Swarm Robotics (pp. 704–720). Advances in Artificial Life, Springer: Berlin/Heidelberg, Germany.Google Scholar
  25. Kernbach, S., Nepomnyashchikh, V., Kancheva, T., & Kernbach, O. (2012). Specialization and generalization of robotic behavior in swarm energy foraging. Mathematical and Computer Modelling of Dynamical Systems, 18, 131–152.CrossRefMATHGoogle Scholar
  26. Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organized task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84.CrossRefGoogle Scholar
  27. Kube, C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1–2), 85–101.CrossRefGoogle Scholar
  28. Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.CrossRefGoogle Scholar
  29. Li, L., Martinoli, A., & Abu-Mostafa, Y. S. (2004). Learning and measuring specialization in collaborative swarm systems. Adaptive Behavior, 12(3–4), 199–212.CrossRefGoogle Scholar
  30. Matarić, M. J., Sukhatme, G. S., & Østergaard, E. H. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14, 255–263.CrossRefMATHGoogle Scholar
  31. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, et al. (Eds.), Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions (pp. 59–65). IPCB: Instituto Politècnico de Castelo Branco, Portugal.Google Scholar
  32. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRefGoogle Scholar
  33. Parker, L. E. (1998). Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation, 14, 220–240.CrossRefGoogle Scholar
  34. Petri, C. A., & Reisig, W. (2008). Petri net. Scholarpedia, 3(4), 6477.CrossRefGoogle Scholar
  35. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.CrossRefGoogle Scholar
  36. Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., & Dorigo, M. (2011). Task partitioning in swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.CrossRefGoogle Scholar
  37. Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., & Birattari, M. (2014). Task partitioning in a robot swarm: Retrieving objects by transferring them directly between sequential sub-tasks. Artificial Life, 20(3), 291–317.Google Scholar
  38. Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013). Task partitioning in a robot swarm: A study on the effect of communication. Swarm Intelligence, 7(2–3), 173–199.CrossRefGoogle Scholar
  39. Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The unified modeling language reference manual (2nd ed.). Upper Saddle River, NJ: Pearson Higher Education.Google Scholar
  40. Sperati, V., Trianni, V., & Nolfi, S. (2008). Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intelligence, 2(2), 73–95.CrossRefGoogle Scholar
  41. Spiteri Staines, A. (2010). Petri nets applications. In Intuitive transformation of UML2 activities into fundamental modeling concept petri nets and colored petri nets (pp. 673–694). Rijeka, Croatia: InTech Europe.Google Scholar
  42. Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., & Birattari, M. (2013). IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, Belgium: IRIDIA, Université Libre de Bruxelles.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arne Brutschy
    • 1
  • Lorenzo Garattoni
    • 1
  • Manuele Brambilla
    • 1
  • Gianpiero Francesca
    • 1
  • Giovanni Pini
    • 1
  • Marco Dorigo
    • 1
  • Mauro Birattari
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations