Swarm Intelligence

, Volume 7, Issue 4, pp 255–277 | Cite as

An ant colony system for transportation user equilibrium analysis in congested networks



In this paper we present Ant Colony System for Traffic Assignment (ACS-TA) for the solution of deterministic and stochastic user equilibria (DUE and SUE, respectively) problems. DUE and SUE are two well known transportation problems where the transportation demand has to be assigned to an underlying network (supply in transportation terminology) according to single user satisfaction rather than aiming at some global optimum. ACS-TA turns the classic ACS meta-heuristic for discrete optimization into a technique for equilibrium computation. ACS-TA can be easily adapted to take into account all aspects characterizing the traffic assignment problem: multiple origin-destination pairs, link congestion, non-separable cost link functions, elasticity of demand, multiple classes of demand and different user cost models including stochastic cost perception. Applications to different networks, including a non-separable costs case study and the standard Sioux Falls benchmark, are reported. Results show good performance and wider applicability with respect to conventional approaches especially for stochastic user equilibrium computation.


Ant Colony System Traffic network Traffic congestion Traffic assignment User equilibrium 


  1. Bar-Gera, H. (2002). Origin-based algorithm for the traffic assignment problem. Transportation Science, 36(4), 398–417. CrossRefMATHGoogle Scholar
  2. Bar-Gera, H., & Boyce, D. (2006). Solving a non-convex combined travel forecasting model by the method of successive averages with constant step sizes. Transportation Research. Part B: Methodological, 40(5), 351–367. CrossRefGoogle Scholar
  3. Bertelle, C., Dutot, A., Lerebourg, S., Olivier, D., & du Havre, L. (2003). Road traffic management based on ant system and regulation model. In Proceedings of modeling and applied simulation, MAS (pp. 1–9). Bergeggi, Italy. Google Scholar
  4. Bifulco, G.N. (2005). I sistemi stradali di trasporto nella società dell’informazione: monitoraggio, simulazione e predisposizione di basi informative dinamiche. Rome: Aracne. Google Scholar
  5. Blum, J. (1954). Multidimensional stochastic approximation methods. The Annals of Mathematical Statistics, 25(4), 737–744. CrossRefMATHGoogle Scholar
  6. Cantarella, G. E. (1997). A general fixed-point approach to multimode multi-user equilibrium assignment with elastic demand. Transportation Science, 31(2), 107–128. CrossRefMATHGoogle Scholar
  7. Cascetta, E. (1998). Teoria e metodi dell’ingegneria dei sistemi di trasporto. Torino: UTET. Google Scholar
  8. Cascetta, E. (2001). Transportation systems engineering: theory and methods. Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  9. Chen, M., & Alfa, A.S. (1991). Algorithms for solving Fisk’s stochastic traffic assignment model. Transportation Research. Part B: Methodological, 25(6), 405–412. CrossRefGoogle Scholar
  10. D’Acierno, L., Montella, B., & De Lucia, F. (2006). A stochastic traffic assignment algorithm based on ant colony optimisation. In Lecture notes in computer science (pp. 25–36). Berlin: Springer. Google Scholar
  11. D’Acierno, L., Gallo, M., & Montella, B. (2012). An ant colony optimisation algorithm for solving the asymmetric traffic assignment problem. European Journal of Operational Research, 2, 459–469. MathSciNetCrossRefGoogle Scholar
  12. Daganzo, C. (1983). Stochastic network equilibrium with multiple vehicle types and asymmetric, indefinite link cost Jacobian. Transportation Science, 17, 282–300. MathSciNetCrossRefGoogle Scholar
  13. Daganzo, C., & Sheffi, Y. (1977). On stochastic models of traffic assignment. Transportation Science, 11(3), 253–274. CrossRefGoogle Scholar
  14. Damberg, O., Lundgren, J., & Patriksson, M. (1996). An algorithm for the stochastic user equilibrium problem. Transportation Research. Part B: Methodological, 30(2), 115–131. CrossRefGoogle Scholar
  15. Doerner, K., Hartl, R., & Reimann, M. (2001). Cooperative ant colonies for optimizing resource allocation in transportation. In Lecture notes in computer science (pp. 70–79). Berlin: Springer. Google Scholar
  16. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: a survey. Theoretical Computer Science, 344(2–3), 243–278. MathSciNetCrossRefMATHGoogle Scholar
  17. Dorigo, M., & Di Caro, G. A. (1999). Ant colony optimization: a new meta-heuristic. In: P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala (eds.), IEEE congress on evolutionary computation (CEC’99) (pp. 1470–1477). Piscataway: IEEE Press. Google Scholar
  18. Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the travelling salesman problem. Biosystems 43(2), 73–81. CrossRefGoogle Scholar
  19. Dorigo, M., & Gambardella, L. M. (1997b). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66. CrossRefGoogle Scholar
  20. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. CrossRefMATHGoogle Scholar
  21. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ants system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 26(1), 29–41. CrossRefGoogle Scholar
  22. Fisk, C. (1980). Some developments in equilibrium traffic assignment. Transportation Research. Part B: Methodological, 14(2), 243–255. MathSciNetCrossRefGoogle Scholar
  23. Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1–2), 95–110. MathSciNetCrossRefGoogle Scholar
  24. Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3–31. CrossRefGoogle Scholar
  25. Grassé, P. P. (1959). La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–81. CrossRefGoogle Scholar
  26. LeBlanc, L. J., Morlok, E. K., & Pierskalla, W. P. (1975). An efficient approach to solving the road network equilibrium traffic assignment problem. Transportation Research, 9(1), 309–318. CrossRefGoogle Scholar
  27. Lee, D. H., Meng, Q., & Deng, W. J. (2010). Origin-based partial linearization method for the stochastic user equilibrium traffic assignment problem. Journal of Transportation Engineering, 136(1), 52–60. CrossRefGoogle Scholar
  28. Li, Y., & Gong, S. (2003). Dynamic ant colony optimisation for TSP. The International Journal of Advanced Manufacturing Technology, 22(7), 528–533. CrossRefGoogle Scholar
  29. Liu, H. X., He, X., & He, B. (2009). Method of successive weighted averages (MSWA) and self-regulated averaging schemes for solving stochastic user equilibrium problem. Networks and Spatial Economics, 9(4), 485–503. MathSciNetCrossRefMATHGoogle Scholar
  30. Matteucci, M., & Mussone, L. (2006). Ant colony optimization technique for equilibrium assignment in congested transportation networks. In Proceedings of the 8th annual conference on genetic and evolutionary computation (pp. 87–88). New York: ACM Press. CrossRefGoogle Scholar
  31. Matteucci, M., Mussone, L., & Ghozia, A. (2009). Transportation network user equilibrium assignment by ant colony systems with a variable trail decay coefficient. In Proceedings of 12th IFAC symposium on control in transportation systems (CTS09). New York: IFAC (pp. 427–430). Google Scholar
  32. Mussone, L., Matteucci, M., & Ponzi, M. (2005). Ant colony optimization for stochastic user equilibrium. In G. Bifulco (Ed.), I sistemi stradali di trasporto nella società dell’informazione: monitoraggio, simulazione e predisposizione di basi informative dinamiche (pp. 175–199). Rome: Aracne. Google Scholar
  33. Nie, Y. (2010). A class of bush-based algorithms for the traffic assignment problem. Transportation Research. Part B: Methodological, 44(1), 73–89. CrossRefGoogle Scholar
  34. Poorzahedy, H., & Abulghasemi, F. (2005). Application of ant system to network design problem. Transportation, 32(3), 251–273. CrossRefGoogle Scholar
  35. Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22, 400–407. MathSciNetCrossRefMATHGoogle Scholar
  36. Russel, S., & Norvig, P. (1995) Artificial intelligence: a modern approach. New Jersey: Prenctice Hall. Google Scholar
  37. Sheffi, Y., & Powell, W. (1981). A comparison of stochastic and deterministic traffic assignment over congested networks. Transportation Research. Part B: Methodological, 15(1), 53–64. CrossRefGoogle Scholar
  38. Socha, K. (2004). ACO for continuous and mixed-variable optimization. In Lecture notes in computer science (pp. 25–36). Berlin: Springer. Google Scholar
  39. Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173. MathSciNetCrossRefMATHGoogle Scholar
  40. Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. In Proceedings of the institution of civil engineers, Road paper No. 36, The Institution of Civil Engineers, London, UK (pp. 325–378). Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
  2. 2.Department of Architecture, Built Environment, Construction EngineeringPolitecnico di MilanoMilanItaly

Personalised recommendations