Swarm Intelligence

, Volume 7, Issue 2–3, pp 201–228 | Cite as

On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics

  • Mieke Massink
  • Manuele Brambilla
  • Diego Latella
  • Marco Dorigo
  • Mauro Birattari


In this paper we analyse a swarm robotics system using Bio-PEPA. Bio-PEPA is a process algebra language originally developed to analyse biochemical systems. A swarm robotics system can be analysed at two levels: the macroscopic level, to study the collective behaviour of the system, and the microscopic level, to study the robot-to-robot and robot-to-environment interactions. In general, multiple models are necessary to analyse a system at different levels. However, developing multiple models increases the effort needed to analyse a system and raises issues about the consistency of the results. Bio-PEPA, instead, allows the researcher to perform stochastic simulation, fluid flow (ODE) analysis and statistical model checking using a single description, reducing the effort necessary to perform the analysis and ensuring consistency between the results. Bio-PEPA is well suited for swarm robotics systems: by using Bio-PEPA it is possible to model distributed systems and their space-time characteristics in a natural way. We validate our approach by modelling a collective decision-making behaviour.


Swarm robotics Modelling Bio-PEPA Fluid flow analysis Statistical model checking 



The research leading to the results presented in this paper has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 246939, and by the EU project ASCENS, 257414. Manuele Brambilla, Mauro Birattari and Marco Dorigo acknowledge support from the F.R.S.-FNRS of Belgium’s Wallonia-Brussels Federation. Diego Latella has been partially supported by Project TRACE-IT—PAR FAS 2007–2013—Regione Toscana. The authors would like to thank Stephen Gilmore and Allan Clark (Edinburgh University) for their help with the Bio-PEPA tool suite and templates.


  1. Aldini, A., Bernardo, M., & Corradini, F. (2010). A process algebraic approach to software architecture design. Heidelberg: Springer. zbMATHCrossRefGoogle Scholar
  2. Aziz, A., Sanwal, K., Singhal, V., & Brayton, R. (2000). Model checking continuous time Markov chains. ACM Transactions on Computational Logic, 1(1), 162–170. MathSciNetCrossRefGoogle Scholar
  3. Baier, C., Katoen, J.-P., & Hermanns, H. (1999). Approximate symbolic model checking of continuous-time Markov chains. In Lecture notes in computer science: Vol. 1664. Concur ’99 (pp. 146–162). Heidelberg: Springer. Google Scholar
  4. Benkirane, S., Norman, R., Scott, E., & Shankland, C. (2012). Measles epidemics and PEPA: an exploration of historic disease dynamics using process algebra. In D. Giannakopoulou & D. Méry (Eds.), Lecture notes in computer science: Vol. 7436. FM 2012: formal methods (pp. 101–115). Berlin: Springer. CrossRefGoogle Scholar
  5. Bergstra, J., Ponse, A., & Smolka, S. (Eds.) (2001). Handbook of process algebra. Amsterdam: Elsevier. zbMATHGoogle Scholar
  6. Bornstein, B., Doyle, J., Finney, A., Funahashi, A., Hucka, M., Keating, S., Kovitz, H. K. B., Matthews, J., Shapiro, B., & Schilstra, M. (2004). Evolving a lingua franca and associated software infrastructure for computational systems biology: the systems biology markup language (SBML) project. Systems Biology, 1, 4153. Google Scholar
  7. Bortolussi, L., & Hillston, J. (2012). Fluid model checking. In M. Koutny & I. Ulidowski (Eds.), Lecture notes in computer science: Vol. 7454. CONCUR (pp. 333–347). Berlin: Springer. Google Scholar
  8. Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2012). Property-driven design for swarm robotics. In Proceedings of 11th international conference on autonomous agents and multiagent systems (AAMAS 2012) (pp. 139–146). IFAAMAS. Google Scholar
  9. Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. CrossRefGoogle Scholar
  10. Burch, J., Clarke, E., McMillan, K., & Dill, D. (1990). Sequential circuit verification using symbolic model checking. In Proceedings of the 27th design automation conference (pp. 46–51). Washington: IEEE Press. Google Scholar
  11. Ciocchetta, F., & Hillston, J. (2008). Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electronic Notes in Theoretical Computer Science, 194(3), 103–117. CrossRefGoogle Scholar
  12. Ciocchetta, F., & Hillston, J. (2009). Bio-PEPA: a framework for the modelling and analysis of biological systems. Theoretical Computer Science, 410(33–34), 3065–3084. MathSciNetzbMATHCrossRefGoogle Scholar
  13. Ciocchetta, F., & Hillston, J. (2012). Bio-PEPA Last checked on October 2012.
  14. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M. L., & Hillston, J. (2009). The Bio-PEPA tool suite. In Proceedings of the 6th international conference on quantitative evaluation of SysTems (QEST 2009) (pp. 309–310). Washington: IEEE Computer Society. CrossRefGoogle Scholar
  15. Clarke, E. M., Emerson, E. A., & Sifakis, J. (2009). Model checking: algorithmic verification and debugging. Communications of the ACM, 52(11), 74–84. CrossRefGoogle Scholar
  16. Dixon, C., Winfield, A., & Fisher, M. (2011). Towards temporal verification of emergent behaviours in swarm robotic systems. In Lecture notes in computer science: Vol. 6856. Towards autonomous robotic systems (pp. 336–347). Heidelberg: Springer. CrossRefGoogle Scholar
  17. Eaton, J. W. (2002). GNU octave manual. London: Network Theory Ltd. Google Scholar
  18. Evans, W., Mermoud, G., & Martinoli, A. (2010). Comparing and modeling distributed control strategies for miniature self-assembling robots. In IEEE international conference on robotics and automation (ICRA) (pp. 1438–1445). Google Scholar
  19. Gilat, A. (2004). MATLAB: an introduction with applications (2nd ed.). New York: Wiley. Google Scholar
  20. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25), 2340–2361. CrossRefGoogle Scholar
  21. Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76, 579–581. CrossRefGoogle Scholar
  22. Havelund, K., Lowry, M., & Penix, J. (2001). Formal analysis of a space-craft controller using spin. IEEE Transactions on Software Engineering, 27(8), 749–765. CrossRefGoogle Scholar
  23. Hermanns, H., Herzog, U., & Katoen, J.-P. (2002). Process algebra for performance evaluation. Theoretical Computer Science, 274(1–2), 43–87. MathSciNetzbMATHCrossRefGoogle Scholar
  24. Hillston, J. (1996). Distinguished dissertation in computer science: A compositional approach to performance modelling. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  25. Hillston, J. (2005). Fluid flow approximation of PEPA models. In Proceedings of the 2th international conference on quantitative evaluation of SysTems (QEST 2005) (pp. 33–43). Washington: IEEE Computer Society. CrossRefGoogle Scholar
  26. Holzmann, G. J. (1991). Design and validation of computer protocols. Upper Saddle River: Prentice-Hall Google Scholar
  27. Kleinrock, L. (1975). Queueing systems: Vol. 1. Theory. New York: Wiley. zbMATHGoogle Scholar
  28. Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour via probabilistic model checking. Robotics and Autonomous Systems, 60(2), 199–213. CrossRefGoogle Scholar
  29. Kurtz, T. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability, 7, 49–58. MathSciNetzbMATHCrossRefGoogle Scholar
  30. Kwiatkowska, M., Norman, G., & Parker, D. (2011). PRISM 4.0: verification of probabilistic real-time systems. In Lecture notes in computer science: Vol. 6806. Proceedings of 23rd international conference on computer aided verification (CAV’11) (pp. 585–591). Heidelberg: Springer. CrossRefGoogle Scholar
  31. Lerman, K., Martinoli, A., & Galstyan, A. (2005). A review of probabilistic macroscopic models for swarm robotic systems. In Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 143–152). Heidelberg: Springer. CrossRefGoogle Scholar
  32. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in collaborative distributed manipulation. International Journal of Robotics Research, 23(4–5), 415–436. Google Scholar
  33. Massink, M., & Latella, D. (2012). Fluid analysis of foraging ants. In M. Sirjani (Ed.), Lecture notes in computer science: Vol. 7274. Coordination (pp. 152–165). Heidelberg: Springer. Google Scholar
  34. Massink, M., Latella, D., Bracciali, A., & Hillston, J. (2011a). Modelling non-linear crowd dynamics in Bio-PEPA. In D. Giannakopoulou & F. Orejas (Eds.), Lecture notes in computer science: Vol. 6603. FASE (pp. 96–110). Heidelberg: Springer. Google Scholar
  35. Massink, M., Latella, D., Bracciali, A., & Hillston, J. (2011b). Modelling non-linear crowd dynamics in Bio-PEPA. In Lecture notes in computer science: Vol. 6603. Fundamental approaches to software engineering (pp. 96–110). Heidelberg: Springer. CrossRefGoogle Scholar
  36. Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012a). Analysing robot swarm decision-making with Bio-PEPA: complete data. Supplementary information page at
  37. Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012b). Analysing robot swarm decision-making with Bio-PEPA. In Lecture notes in computer science: Vol. 7461. Swarm intelligence (pp. 25–36). Heidelberg: Springer. CrossRefGoogle Scholar
  38. Massink, M., Latella, D., Bracciali, A., Harrison, M., & Hillston, J. (2012c). Scalable context-dependent analysis of emergency egress models. Formal Aspects of Computing, 24(2), 267–302. doi: 10.1007/s00165-011-0188-1. Published online: 03 July 2011. CrossRefGoogle Scholar
  39. Mather, T., & Hsieh, M. (2012). Ensemble synthesis of distributed control and communication strategies. In IEEE international conference on robotics and automation (ICRA) (pp. 4248–4253). Google Scholar
  40. Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intelligence, 5(3–4), 305–327. Google Scholar
  41. Napp, N., Burden, S., & Klavins, E. (2011). Setpoint regulation for stochastically interacting robots. Autonomous Robots, 30, 57–71. CrossRefGoogle Scholar
  42. Nimal, V. (2010). Statistical approaches for probabilistic model checking. MSc mini-project dissertation, Oxford University Computing Laboratory Google Scholar
  43. Sahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 10–20). Heidelberg: Springer. CrossRefGoogle Scholar
  44. Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review E, 83, 031116. CrossRefGoogle Scholar
  45. Tribastone, M., Gilmore, S., & Hillston, J. (2012). Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering, 38(1), 205–219. CrossRefGoogle Scholar
  46. Tschaikowski, M., & Tribastone, M. (2012). Exact fluid lumpability for Markovian process algebra. In M. Koutny & I. Ulidowski (Eds.), Lecture notes in computer science: Vol. 7454. CONCUR 2012—concurrency theory: 23rd international conference (pp. 380–394). Heidelberg: Springer. Google Scholar
  47. Valentini, G., Birattari, M., & Dorigo, M. (2013). Majority rule with differential latency: an absorbing Markov chain to model consensus. In European conference on complex systems (ECCS’12). Google Scholar
  48. Younes, H. L. S., Kwiatkowska, M. Z., Norman, G., & Parker, D. (2006). Numerical vs. statistical probabilistic model checking. International Journal on Software Tools for Technology Transfer, 8(3), 216–228. CrossRefGoogle Scholar
  49. Zarzhitsky, D., Spears, D., Thayer, D., & Spears, W. (2005). Agent-based chemical plume tracing using fluid dynamics. In M. Hinchey, J. Rash, W. Truszkowski, & C. Rouff (Eds.), Lecture notes in computer science: Vol. 3228. Formal approaches to agent-based systems (pp. 146–160). Heidelberg: Springer. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mieke Massink
    • 1
  • Manuele Brambilla
    • 2
  • Diego Latella
    • 1
  • Marco Dorigo
    • 2
  • Mauro Birattari
    • 2
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’ (ISTI)CNRPisaItaly
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations