Swarm Intelligence

, Volume 7, Issue 1, pp 1–41 | Cite as

Swarm robotics: a review from the swarm engineering perspective

  • Manuele Brambilla
  • Eliseo Ferrante
  • Mauro Birattari
  • Marco Dorigo
Article

Abstract

Swarm robotics is an approach to collective robotics that takes inspiration from the self-organized behaviors of social animals. Through simple rules and local interactions, swarm robotics aims at designing robust, scalable, and flexible collective behaviors for the coordination of large numbers of robots. In this paper, we analyze the literature from the point of view of swarm engineering: we focus mainly on ideas and concepts that contribute to the advancement of swarm robotics as an engineering field and that could be relevant to tackle real-world applications. Swarm engineering is an emerging discipline that aims at defining systematic and well founded procedures for modeling, designing, realizing, verifying, validating, operating, and maintaining a swarm robotics system. We propose two taxonomies: in the first taxonomy, we classify works that deal with design and analysis methods; in the second taxonomy, we classify works according to the collective behavior studied. We conclude with a discussion of the current limits of swarm robotics as an engineering discipline and with suggestions for future research directions.

Keywords

Swarm robotics Review Swarm engineering 

References

  1. Abbott, R. (2006). Emergence explained. Complexity, 12(1), 13–26. MathSciNetGoogle Scholar
  2. Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In Proceedings of the first international joint conference on autonomous agents and multi-agent systems (pp. 1090–1097). Richland: IFAAMAS. Google Scholar
  3. Amé, J., Halloy, J., Rivault, C., Detrain, C., & Deneubourg, J. L. (2006). Collegial decision making based on social amplification leads to optimal group formation. Proceedings of the National Academy of Sciences, 103(15), 5835–5840. Google Scholar
  4. Ampatzis, C. (2008). On the evolution of autonomous time-based decision-making and communication in collective robotics. PhD thesis, IRIDIA, Université Libre de Bruxelles, Belgium. Google Scholar
  5. Ampatzis, C., Tuci, E., Trianni, V., & Dorigo, M. (2008). Evolution of signaling in a multi-robot system: categorization and communication. Adaptive Behavior, 16(1), 5–26. Google Scholar
  6. Ampatzis, C., Tuci, E., Trianni, V., Christensen, A. L., & Dorigo, M. (2009). Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Artificial Life, 15, 465–484. Google Scholar
  7. Anderson, C., Theraulaz, G., & Deneubourg, J.-L. (2002). Self-assemblages in insect societies. Insectes Sociaux, 49(2), 99–110. Google Scholar
  8. Bachrach, J., Beal, J., & McLurkin, J. (2010). Composable continuous-space programs for robotic swarms. Neural Computing & Applications, 19(6), 825–847. Google Scholar
  9. Bahçeci, E., & Şahin, E. (2005). Evolving aggregation behaviors for swarm robotic systems: a systematic case study. In Proceedings of the 2005 swarm intelligence symposium, SIS 2005 (pp. 333–340). Piscataway: IEEE Press. Google Scholar
  10. Bahçeci, E., Soysal, O., & Şahin, E. (2003). A review: pattern formation and adaptation in multi-robot systems (Technical Report CMU-RI-TR-03-43). Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Google Scholar
  11. Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In Proceedings of the 2000 IEEE international conference on robotics and automation, ICRA 2000 (pp. 73–80). Piscataway: IEEE Press. Google Scholar
  12. Baldassarre, G. (2006). Evolution of collective behaviour: coordination object retrieval in groups of physically-linked simulated robots. URL http://laral.istc.cnr.it/baldassarre/demos/2003swarmobject/swarmobject.htm. Last checked on November 2012.
  13. Baldassarre, G., Nolfi, S., & Parisi, D. (2003). Evolving mobile robots able to display collective behaviors. Artificial Life, 9(3), 255–267. Google Scholar
  14. Baldassarre, G., Parisi, D., & Nolfi, S. (2006). Distributed coordination of simulated robots based on self-organization. Artificial Life, 12(3), 289–311. Google Scholar
  15. Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007). Self-organized coordinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 37(1), 224–239. Google Scholar
  16. Bayindir, L., & Şahin, E. (2007). A review of studies in swarm robotics. Turkish Journal of Electrical Engineering, 15(2), 115–147. Google Scholar
  17. Beal, J. (2004). Programming an amorphous computational medium. In Lecture notes in computer science: Vol. 3566. Proceedings of the international workshop on unconventional programming paradigms (UPP) (p. 97). Berlin: Springer. Google Scholar
  18. Beckers, R., Holland, O., & Deneubourg, J.-L. (1994). From local actions to global tasks: stigmergy and collective robotics. In Artificial life IV (pp. 181–189). Cambridge: MIT Press. Google Scholar
  19. Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamic neural networks for adaptive behavior. Adaptive Behavior, 1(1), 91–122. Google Scholar
  20. Beni, G. (2005). From swarm intelligence to swarm robotics. In Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 1–9). Berlin: Springer. Google Scholar
  21. Berman, S., Halász, Á. M., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937. Google Scholar
  22. Berman, S., Lindsey, Q., Sakar, M., Kumar, V., & Pratt, S. (2011a). Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proceedings of the IEEE, 99(9), 1470–1481. Google Scholar
  23. Berman, S., Nagpal, R., & Halasz, A. (2011b). Optimization of stochastic strategies for spatially inhomogeneous robot swarms: a case study in commercial pollination. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3923–3930). Google Scholar
  24. Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1997). Adaptive task allocation inspired by a model of division of labor in social insects. In Biocomputing and emergent computation: proceedings of BCEC97, London, UK (pp. 36–45). Singapore: World Scientific. Google Scholar
  25. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press. MATHGoogle Scholar
  26. Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2009). A reliable distributed algorithm for group size estimation with minimal communication requirements. In Fourteenth international conference on advanced robotics—ICAR 2009 (p. 6). Proceedings on CD-ROM, paper ID 137. Google Scholar
  27. Brambilla, M., Pinciroli, C., Birattari, M., & Dorigo, M. (2012). Property-driven design for swarm robotics. In Proceedings of 11th international conference on autonomous agents and multiagent systems (AAMAS 2012) (pp. 139–146). Richland: IFAAMAS. Google Scholar
  28. Breder, C. M. Jr. (1954). Equations descriptive of fish schools and other animal aggregations. Ecology, 35(3), 361–370. Google Scholar
  29. Brooks, R. (1990). Elephants don’t play chess. Robotics and Autonomous Systems, 6(1–2), 3–15. Google Scholar
  30. Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23. Google Scholar
  31. Brutschy, A., Pini, G., & Decugnière, A. (2012). Grippable objects for the foot-bot (Technical Report TR/IRIDIA/2012-001). IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. Google Scholar
  32. Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton studies in complexity. Princeton: Princeton University Press. Google Scholar
  33. Campo, A., & Dorigo, M. (2007). Efficient multi-foraging in swarm robotics. In Lecture notes in artificial intelligence: Vol. 4648. Advances in artificial life, proceedings of ECAL 2007 (pp. 696–705). Berlin: Springer. Google Scholar
  34. Campo, A., Nouyan, S., Birattari, M., Groß, R., & Dorigo, M. (2006). Enhancing cooperative transport using negotiation of goal direction. In Lecture notes in computer science: Vol. 4150. Proceedings of the fifth international workshop on ant colony optimization and swarm intelligence (ANTS 2006) (pp. 365–366). Berlin: Springer. Google Scholar
  35. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2011). Self-organized discrimination of resources. PLoS ONE, 6(5), 05. Google Scholar
  36. Cao, Y. U., Fukunaga, A. S., Kahng, A. B., & Meng, F. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4(1), 7–27. Google Scholar
  37. Çelikkanat, H., & Şahin, E. (2010). Steering self-organized robot flocks through externally guided individuals. Neural Computing & Applications, 19(6), 849–865. Google Scholar
  38. Christensen, A. L., O’Grady, R., & Dorigo, M. (2008). SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence, 2(2–4), 143–165. Google Scholar
  39. Christensen, A. L., O’Grady, R., & Dorigo, M. (2009). From fireflies to fault-tolerant swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4), 754–766. Google Scholar
  40. Correll, N. (2008). Parameter estimation and optimal control of swarm-robotic systems: a case study in distributed task allocation. In IEEE international conference on robotics and automation (ICRA) (pp. 3302–3307). Google Scholar
  41. Correll, N., & Martinoli, A. (2007). Modeling self-organized aggregation in a swarm of miniature robots. In IEEE international conference on robotics and automation. Google Scholar
  42. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516. Google Scholar
  43. Crespi, V., Galstyan, A., & Lerman, K. (2008). Top-down vs bottom-up methodologies in multi-agent system design. Autonomous Robots, 24(3), 303–313. Google Scholar
  44. Dantu, K., Berman, S., Kate, B., & Nagpal, R. (2012). A comparison of deterministic and stochastic approaches for allocating spatially dependent tasks in micro-aerial vehicle collectives. In IEEE/RSJ international conference on intelligent robots and systems. Google Scholar
  45. Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(2), 159–168. Google Scholar
  46. Di Caro, G. A., Ducatelle, F., & Gambardella, L. M. (2009). Wireless communications for distributed navigation in robot swarms. In Lecture notes in computer science: Vol. 5484. Applications of evolutionary computing (pp. 21–30). Berlin: Springer. Google Scholar
  47. Dixon, C., Winfield, A., & Fisher, M. (2011). Towards temporal verification of emergent behaviours in swarm robotic systems. In Lecture notes in computer science: Vol. 6856. Towards autonomous robotic systems (pp. 336–347). Berlin: Springer. Google Scholar
  48. Donald, B. R., Jennings, J., & Rus, D. (1997). Information invariants for distributed manipulation. The International Journal of Robotics Research, 16(5), 673–702. Google Scholar
  49. Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462. Google Scholar
  50. Dorigo, M., & Şahin, E. (2004). Guest editorial. Autonomous Robots, 17, 111–113. Google Scholar
  51. Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C., Labella, T. H., O’Grady, R., Bonani, M., & Mondada, F. (2006). SWARM-BOT: design and implementation of colonies of self-assembling robots. In Computational intelligence: principles and practice (pp. 103–135). New York: IEEE Computational Intelligence Society. Chap. 6. Google Scholar
  52. Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A., Christensen, A., Decugnière, A., Di Caro, G., Ducatelle, F., Ferrante, E., Forster, A., Martinez Gonzales, J., Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., Montes de Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Retornaz, P., Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stutzle, T., Trianni, V., Tuci, E., Turgut, A., & Vaussard, F. (2012). Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, in press. Google Scholar
  53. Ducatelle, F., Di Caro, G. A., Pinciroli, C., Mondada, F., & Gambardella, L. M. (2011a). Communication assisted navigation in robotic swarms: self-organization and cooperation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2011) (pp. 4981–4988). Los Alamitos: IEEE Computer Society Press. Google Scholar
  54. Ducatelle, F., Di Caro, C. P. G. A., & Gambardella, L. M. (2011b). Self-organized cooperation between robotic swarms. Swarm Intelligence, 5(2), 73–96. Google Scholar
  55. Dudek, G., Jenkin, M., Milios, E., & Wilkes, D. (1993). A taxonomy for swarm robots. In Proceedings of the 1993 IEEE/RSJ international conference on intelligent robots and systems, IROS 93 (pp. 441–447). Piscataway: IEEE Press. Google Scholar
  56. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. Google Scholar
  57. Ferrante, E., Turgut, A. E., Mathews, N., Birattari, M., & Dorigo, M. (2010). Flocking in stationary and non-stationary environments: a novel communication strategy for heading alignment. In Lecture notes in computer science: Vol. 6239. Parallel problem solving from nature—PPSN XI: 11th international conference (pp. 331–340). Berlin: Springer. Google Scholar
  58. Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., & Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behavior. Google Scholar
  59. Ferrante, E., Brambilla, M., Birattari, M., & Dorigo, M. (2013). Socially-mediated negotiation for obstacle avoidance in collective transport. In Springer tracts in advanced robotics: Vol. 83. Proceedings of the international symposium on distributed autonomous robotics systems (DARS 2010) (pp. 571–583). Berlin: Springer. Google Scholar
  60. Fine, T. L. (1999). Feedforward neural network methodology. Berlin: Springer. MATHGoogle Scholar
  61. Flocchini, P., Prencipe, G., Santoro, N., & Widmayer, P. (2008). Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 407(1–3), 412–447. MathSciNetMATHGoogle Scholar
  62. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., & Birattari, M. (2012). Analysing an evolved robotic behaviour using a biological model of collegial decision making. In Lecture notes in computer science: Vol. 7426. Proceedings of the 12th international conference on adaptive behavior (SAB2012) (pp. 381–390). Berlin: Springer. Google Scholar
  63. Franks, N., & Sendova-Franks, A. (1992). Brood sorting by ants: distributing the workload over the work-surface. Behavioral Ecology and Sociobiology, 30, 109–123. Google Scholar
  64. Friedmann, M. (2010). Simulation of autonomous robot teams with adaptable level of abstraction. Ph.D. thesis, University of Darmstadt, Germany. Google Scholar
  65. Frigg, R., & Hartmann, S. (2012). Models in science. In The Stanford encyclopedia of philosophy. Stanford: Stanford University. Spring 2012 edition. Google Scholar
  66. Galstyan, A., Hogg, T., & Lerman, K. (2005). Modeling and mathematical analysis of swarms of microscopic robots. In Proceedings of the 2005 swarm intelligence symposium—(SIS 2005) (pp. 201–208). Los Alamitos: IEEE Computer Society Press. Google Scholar
  67. Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., & Theraulaz, G. (2005). Aggregation behaviour as a source of collective decision in a group of cockroach-like robots. In Lecture notes in artificial intelligence: Vol. 3630. Advances in artificial life (pp. 169–178). Berlin: Springer. Google Scholar
  68. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., & Theraulaz, G. (2009). Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adaptive Behavior, 17(2), 109–133. Google Scholar
  69. Gazi, V., & Fidan, B. (2007). Coordination and control of multi-agent dynamic systems: models and approaches. In Lecture notes in computer science: Vol. 4433. Swarm robotics (pp. 71–102). Berlin: Springer. Google Scholar
  70. Gazi, V., & Passino, K. M. (2002). Stability analysis of social foraging swarms: combined effects of attractant/repellent profiles. In Proceedings of the 41st IEEE conference on decision and control (Vol. 3, pp. 2848–2853). Piscataway: IEEE Press. Google Scholar
  71. Gazi, V., & Passino, K. M. (2003). Stability analysis of swarms. IEEE Transactions on Automatic Control, 48(4), 692–696. MathSciNetGoogle Scholar
  72. Gazi, V., & Passino, K. M. (2004a). A class of attractions/repulsion functions for stable swarm aggregations. International Journal of Control, 77(18), 1567–1579. MathSciNetMATHGoogle Scholar
  73. Gazi, V., & Passino, K. M. (2004b). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 34(1), 539–557. Google Scholar
  74. Gazi, V., & Passino, K. M. (2005). Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 35(4), 834–841. Google Scholar
  75. Getling, A. V. (1998). Rayleigh–Bénard convection: structures and dynamics (Vol. 11). London: World Scientific. MATHGoogle Scholar
  76. Giusti, A., Nagi, J., Gambardella, L., & Caro, G. D. (2012). Distributed consensus for interaction between humans and mobile robot swarms. In Proceedings of 11th international conference on autonomous agents and multiagent systems (AAMAS 2012), Richland, SC. Google Scholar
  77. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley. MATHGoogle Scholar
  78. Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83(6), 1420–1443. Google Scholar
  79. Grassé, P.-P. (1959). La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–80. Google Scholar
  80. Groß, R., & Dorigo, M. (2008a). Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5), 285–305. Google Scholar
  81. Groß, R., & Dorigo, M. (2008b). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490–1508. Google Scholar
  82. Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13. Google Scholar
  83. Grünbaum, D., & Okubo, A. (1994). Modeling social animal aggregations. Frontiers in Theoretical Biology, 100, 296–325. Google Scholar
  84. Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-making based on social odometry. Neural Computing & Applications, 19(6), 807–823. Google Scholar
  85. Halász, A., Liang, Y., Hsieh, M., & Lai, H.-J. (2012). Emergence of specialization in a swarm of robots. In Springer tracts in advanced robotics: Vol. 83. Distributed autonomous robotic systems (pp. 403–416). Berlin: Springer. Google Scholar
  86. Hamann, H. (2012). Towards swarm calculus: universal properties of swarm performance and collective decisions. In Lecture notes in computer science: Vol. 7461. Swarm intelligence: 8th international conference, ANTS 2012 (pp. 168–179). Berlin: Springer. Google Scholar
  87. Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2–4), 209–239. Google Scholar
  88. Hettiarachchi, S. D. (2007). Distributed evolution for swarm robotics. PhD thesis, University of Wyoming, Laramie, WY. Google Scholar
  89. Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: MIT Press. Google Scholar
  90. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In Proceedings of the 2002 international symposium on distributed autonomous robotic systems (DARS 2002) (pp. 299–308). Berlin: Springer. Google Scholar
  91. Hsieh, M. A., Halász, Á., Berman, S., & Kumar, V. (2008). Biologically inspired redistribution of a swarm of robots among multiple sites. Swarm Intelligence, 2(2–4), 121–141. Google Scholar
  92. Iocchi, L., Nardi, D., & Salerno, M. (2001). Reactivity and deliberation: a survey on multi-robot systems. In Lecture notes in computer science: Vol. 2103. Balancing reactivity and social deliberation in multi-agent systems (pp. 9–32). Berlin: Springer. Google Scholar
  93. Jeanson, R., Rivault, C., Deneubourg, J.-L., Blanco, S., Fournier, R., Jost, C., & Theraulaz, G. (2005). Self-organized aggregation in cockroaches. Animal Behaviour, 69(1), 169–180. Google Scholar
  94. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 4, 237–285. Google Scholar
  95. Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1–2), 99–134. MathSciNetMATHGoogle Scholar
  96. Kalyanakrishnan, S., & Stone, P. (2007). Batch reinforcement learning in a complex domain. In AAMAS ’07: proceedings of the 6th international joint conference on autonomous agents and multiagent systems. Richland: IFAAMAS. Google Scholar
  97. Kaminka, G. A., Schechter-Glick, R., & Sadov, V. (2008). Using sensor morphology for multirobot formations. IEEE Transactions on Robotics, 24(2), 271–282. Google Scholar
  98. Kazadi, S. (2000). Swarm engineering. Ph.D. thesis, California Institute of Technology, Pasadena, CA, USA. Google Scholar
  99. Kazadi, S. (2009). Model independence in swarm robotics. International Journal of Intelligent Computing and Cybernetics, 2(4), 672–694. MathSciNetMATHGoogle Scholar
  100. Kendall, D. G. (1966). Branching processes since 1873. Journal of the London Mathematical Society, 41(1), 386–406. Google Scholar
  101. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98. MathSciNetGoogle Scholar
  102. Kolling, A., Nunnally, S., & Lewis, M. (2012). Towards human control of robot swarms. In Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction (pp. 89–96). New York: ACM. Google Scholar
  103. Konur, S., Dixon, C., & Fisher, M. (2012). Analysing robot swarm behaviour via probabilistic model checking. Robotics and Autonomous Systems, 60(2), 199–213. Google Scholar
  104. Kramer, J., & Scheutz, M. (2007). Development environments for autonomous mobile robots: a survey. Autonomous Robots, 22(2), 101–132. Google Scholar
  105. Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: self-organised task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84. Google Scholar
  106. Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1–2), 85–101. Google Scholar
  107. Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25. Google Scholar
  108. Langer, J. S. (1980). Instabilities and pattern formation in crystal growth. Reviews of Modern Physics, 52(1), 1–28. Google Scholar
  109. Lee, J., & Arkin, R. C. (2003). Adaptive multi-robot behavior via learning momentum. In IEEE international conference on intelligent robots and systems (IROS 2003) (Vol. 2). Piscataway: IEEE Press. Google Scholar
  110. Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: effect of interference. Autonomous Robots, 13(2), 127–141. MATHGoogle Scholar
  111. Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7(4), 375–393. Google Scholar
  112. Levi, P., & Kernbach, S. (2010). Symbiotic multi-robot organisms. Berlin: Springer. MATHGoogle Scholar
  113. Li, L., Martinoli, A., & Abu-Mostafa, Y. S. (2004). Learning and measuring specialization in collaborative swarm systems. Adaptive Behavior, 12(3–4), 199–212. Google Scholar
  114. Lindsey, Q., Mellinger, D., & Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33, 323–336. Google Scholar
  115. Liu, W. (2007). Modelling of adaptive foraging in swarm robotic systems. URL http://www.brl.ac.uk/researchthemes/swarmrobotics/swarmroboticsystems.aspx. Last checked on November 2012.
  116. Liu, W., & Winfield, A. (2010). Modeling and optimization of adaptive foraging in swarm robotic systems. International Journal of Robotics Research, 29(14), 1743–1760. Google Scholar
  117. Liu, W., Winfield, A. F. T., Sa, J., Chen, J., & Dou, L. (2007). Towards energy optimization: emergent task allocation in a swarm of foraging robots. Adaptive Behavior, 15(3), 289–305. Google Scholar
  118. Liu, Y., & Passino, K. M. (2004). Stable social foraging swarms in a noisy environment. IEEE Transactions on Automatic Control, 49(1), 30–44. MathSciNetGoogle Scholar
  119. Liu, Y., Passino, K. M., & Polycarpou, M. M. (2003). Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE Transactions on Automatic Control, 48(1), 76–95. MathSciNetGoogle Scholar
  120. Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: from probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63. Google Scholar
  121. Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: a case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–436. Google Scholar
  122. Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2012). Analysing robot swarm decision-making with bio-pepa. In Lecture notes in computer science: Vol. 7461. Swarm intelligence (pp. 25–36). Berlin: Springer. Google Scholar
  123. Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Autonomous Robots, 4(1), 73–83. Google Scholar
  124. Matarić, M. J. (1998). Using communication to reduce locality in distributed multi-agent learning. Journal of Experimental and Theoretical Artificial Intelligence, 10(3), 357–369. MATHGoogle Scholar
  125. Matarić, M. J., & Cliff, D. (1996). Challenges in evolving controllers for physical robots. Robotics and Autonomous Systems, 19(1), 67–83. Google Scholar
  126. Mathews, N., Christensen, A. L., Ferrante, E., O’Grady, R., & Dorigo, M. (2010). Establishing spatially targeted communication in a heterogeneous robot swarm. In Proceedings of 9th international conference on autonomous agents and multiagent systems (AAMAS 2010) (pp. 939–946). Richland: IFAAMAS. Google Scholar
  127. Mathews, N., Christensen, A. L., O’Grady, R., & Dorigo, M. (2012). Spatially targeted communication and self-assembly. In Proceedings of the 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS 2012) (pp. 2678–2679). Los Alamitos: IEEE Computer Society Press. Google Scholar
  128. Maxim, P. M., Spears, W. M., & Spears, D. F. (2009). Robotic chain formations. In Proceedings of the IFAC workshop on networked robotics (pp. 19–24). Oxford: Elsevier. Google Scholar
  129. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., & Schmidt, B. (2006). Speaking swarmish: human–robot interface design for large swarms of autonomous mobile robots. In 2006 AAAI spring symposium (pp. 72–75). Menlo Park: AAAI. Google Scholar
  130. Meinhardt, H. (1982). Models of biological pattern formation (Vol. 6). London: Academic Press. Google Scholar
  131. Melhuish, C. (1999). Intelligent Autonomous Systems Laboratory. URL http://www.ias.uwe.ac.uk/. Last checked on November 2012.
  132. Melhuish, C., Holland, O., & Hoddell, S. (1999a). Convoying: using chorusing for the formation of travelling groups of minimal agents. Robotics and Autonomous Systems, 28(2–3), 207–216. Google Scholar
  133. Melhuish, C., Welsby, J., & Edwards, C. (1999b). Using templates for defensive wall building with autonomous mobile ant-like robots. In Proceedings of towards intelligent and autonomous mobile robots (Vol. 99). Google Scholar
  134. Minsky, M. (1967). Computation: finite and infinite machines. Upper Saddle River: Prentice-Hall. MATHGoogle Scholar
  135. Mondada, F. (2005). Swarm-bots. URL http://www.swarm-bot.org/. Last checked on November 2012.
  136. Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., & Floreano, D. (2005). Superlinear physical performances in a SWARM-BOT. In Lecture notes in computer science: Vol. 3630. Proceedings of the VIIIth European conference on artificial life (pp. 282–291). Berlin: Springer. Google Scholar
  137. Montes de Oca, M. A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intelligence, 5(3–4), 305–327. Google Scholar
  138. Naghsh, A., Gancet, J., Tanoto, A., & Roast, C. (2008). Analysis and design of human-robot swarm interaction in firefighting. In Proceedings of the 17th IEEE international symposium on the robot and human interactive communication (Ro-man 2008) (pp. 255–260). Google Scholar
  139. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics. intelligent robots and autonomous agents. Cambridge: MIT Press. Google Scholar
  140. Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23. Google Scholar
  141. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711. Google Scholar
  142. O’Grady, R., Christensen, A., & Dorigo, M. (2009a). SWARMORPH: multi-robot morphogenesis using directional self-assembly. IEEE Transactions on Robotics, 25(3), 738–743. Google Scholar
  143. O’Grady, R., Pinciroli, C., Christensen, A. L., & Dorigo, M. (2009b). Supervised group size regulation in a heterogeneous robotic swarm. In 9th conference on autonomous robot systems and competitions, robótica 2009 (pp. 113–119). Castelo Branco: IPCB-Instituto Politécnico de Castelo Branco. Google Scholar
  144. O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2010). Self-assembly strategies in a group of autonomous mobile robots. Autonomous Robots, 28(4), 439–455. Google Scholar
  145. O’Hara, K. J., & Balch, T. (2007). Pervasive sensor-less networks for cooperative multi-robot tasks. In Distributed autonomous robotic systems 6 (pp. 305–314). Tokyo: Springer. Google Scholar
  146. Okubo, A. (1986). Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Advances in Biophysics, 22(0), 1–94. Google Scholar
  147. Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: the state of the art. Autonomous Agents and Multi-Agent Systems, 11(3), 387–434. Google Scholar
  148. Parker, C. A. C., & Zhang, H. (2011). Biologically inspired collective comparisons by robotic swarms. International Journal of Robotics Research, 30(5), 524–535. Google Scholar
  149. Parker, L. E. (1996). L-ALLIANCE: task-oriented multi-robot learning in behavior-based systems. Advanced Robotics, 11(4), 305–322. Google Scholar
  150. Parrish, J. K., Viscido, S. V., & Grünbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 202(3), 296–305. Google Scholar
  151. Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324. MATHGoogle Scholar
  152. Pinciroli, C., O’Grady, R., Christensen, A. L., & Dorigo, M. (2009). Self-organised recruitment in a heterogeneous swarm. In Fourteenth international conference on advanced robotics—ICAR 2009 (p. 6). Proceedings on CD-ROM, paper ID 176. Google Scholar
  153. Pinciroli, C., O’Grady, R., Christensen, A. L., & Dorigo, M. (2010). Heterogeneous swarms through minimal communication between homogeneous sub-swarms. In Lecture notes in computer science: Vol. 6234. Proceedings of the seventh international conference on ant colony optimization and swarm intelligence (ANTS-2010) (pp. 558–559). Berlin: Springer. Google Scholar
  154. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L. M., & Dorigo, M. (2012). ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4). Google Scholar
  155. Pini, G. (2011). Task partitioning in swarms of robots an adaptive method for strategy selection. URL http://iridia.ulb.ac.be/supp/IridiaSupp2011-003/index.html. Last checked on November 2012.
  156. Pini, G., & Tuci, E. (2008). On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach. Connection Science, 20(2–3), 211–230. Google Scholar
  157. Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2009). Interference reduction through task partitioning in a robotic swarm. In IEEE international conference on neural networks: IEEE world congress on computational intelligence. Setubal: INSTICC Press. Google Scholar
  158. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011). Task partitioning in swarms of robots: an adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304. Google Scholar
  159. Podevijn, G., O’Grady, R., & Dorigo, M. (2012). Self-organised feedback in human swarm interaction. In Proceedings of the workshop on robot feedback in human-robot interaction: how to make a robot readable for a human interaction partner (Ro-Man 2012). Google Scholar
  160. Prorok, A., Correll, N., & Martinoli, A. (2011). Multi-level spatial modeling for stochastic distributed robotic systems. The International Journal of Robotics Research, 30(5), 574–589. Google Scholar
  161. Pugh, J., & Martinoli, A. (2007). Parallel learning in heterogeneous multi-robot swarms. In Proceedings of the IEEE congress on evolutionary computation (pp. 3839–3846). Piscataway: IEEE Press. Google Scholar
  162. Reif, J. H., & Wang, J. (1999). Social potential fields: a distributed behavioral control for autonomous robots. Robotics and Autonomous Systems, 27(3), 171–194. Google Scholar
  163. Reynolds, C. (1987a). Boids (Flocks, herds, and schools: a distributed behavioral model). URL http://www.red3d.com/cwr/boids/. Last checked on November 2012.
  164. Reynolds, C. W. (1987b). Flocks, herds and schools: a distributed behavioral model. Computer Graphics, 21(4), 25–34. Google Scholar
  165. Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (2009). Reinforcement learning for robot soccer. Autonomous Robots, 27(1), 55–73. Google Scholar
  166. Rosenfeld, A., Kaminka, G. A., Kraus, S., & Shehory, O. (2008). A study of mechanisms for improving robotic group performance. Artificial Intelligence, 172(6–7), 633–655. MATHGoogle Scholar
  167. Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 10–20). Berlin: Springer. Google Scholar
  168. Scheidler, A. (2011). Dynamics of majority rule with differential latencies. Physical Review E, 83(3), 031116. Google Scholar
  169. Schmickl, T., Hamann, H., Wörn, H., & Crailsheim, K. (2009). Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and Autonomous Systems, 57(9), 913–921. Google Scholar
  170. Schwager, M., Michael, N., Kumar, V., & Rus, D. (2011). Time scales and stability in networked multi-robot systems. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3855–3862). Google Scholar
  171. Shucker, B., & Bennett, J. K. (2007). Scalable control of distributed robotic macrosensors. In Distributed autonomous robotic systems 6 (pp. 379–388). Tokyo: Springer. Google Scholar
  172. Shucker, B., Murphey, T., & Bennett, J. (2008). Convergence-preserving switching for topology-dependent decentralized systems. IEEE Transactions on Robotics, 24(6), 1405–1415. Google Scholar
  173. Soysal, O., & Şahin, E. (2005). Probabilistic aggregation strategies in swarm robotic systems. In Proceedings of the IEEE swarm intelligence symposium (pp. 325–332). Piscataway: IEEE Press. Google Scholar
  174. Soysal, O., & Şahin, E. (2007). A macroscopic model for self-organized aggregation in swarm robotic systems. In Lecture notes in computer science: Vol. 4433. Swarm robotics (pp. 27–42). Berlin: Springer. Google Scholar
  175. Soysal, O., Bahçeci, E., & Şahin, E. (2007). Aggregation in swarm robotic systems: evolution and probabilistic control. Turkish Journal of Electrical Engineering and Computer Sciences, 15(2), 199–225. Google Scholar
  176. Spears, W. M., & Spears, D. F. (2012). Physics-based swarm intelligence. Berlin: Springer. Google Scholar
  177. Spears, W. M., Spears, D. F., Hamann, J. C., & Heil, R. (2004). Distributed, physics-based control of swarms of vehicles. Autonomous Robots, 17(2–3), 137–162. Google Scholar
  178. Sperati, V., Trianni, V., & Nolfi, S. (2008). Evolving coordinated group behaviours through maximization of mean mutual information. Swarm Intelligence, 2(2–4), 73–95. Google Scholar
  179. Sperati, V., Trianni, V., & Nolfi, S. (2011). Self-organised path formation in a swarm of robots. Swarm Intelligence, 5, 97–119. Google Scholar
  180. Stewart, R. L., & Russell, R. A. (2006). A distributed feedback mechanism to regulate wall construction by a robotic swarm. Adaptive Behavior, 14, 21–51. Google Scholar
  181. Stirling, T., & Floreano, D. (2010). Energy efficient swarm deployment for search in unknown environments. In Lecture notes in computer science. Proceedings of the 7th international conference on swarm intelligence (ANTS 2010) (pp. 562–563). Berlin: Springer. Google Scholar
  182. Stone, P., & Veloso, M. M. (2000). Multiagent systems: a survey from a machine learning perspective. Autonomous Robots, 8(3), 345–383. Google Scholar
  183. Stranieri, A., Ferrante, E., Turgut, A. E., Trianni, V., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Self-organized flocking with a heterogeneous mobile robot swarm. In Advances in artificial life, ECAL 2011 (pp. 789–796). Cambridge: MIT Press. Google Scholar
  184. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge: MIT Press. Google Scholar
  185. Theraulaz, G., Goss, S., Gervet, J., & Deneubourg, J.-L. (1990). Task differentiation in polistes wasp colonies: a model for self-organizing groups of robots. In Proceedings of the first international conference on simulation of adaptive behavior on from animals to animats (pp. 346–355). Cambridge: MIT Press. Google Scholar
  186. Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998). Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society B. Biological Sciences, 265(1393), 327–332. Google Scholar
  187. Trianni, V., & Dorigo, M. (2006). Self-organisation and communication in groups of simulated and physical robots. Biological Cybernetics, 95, 213–231. MATHGoogle Scholar
  188. Trianni, V., Labella, T. H., Groß, R., Şahin, E., Dorigo, M., & Deneubourg, J.-L. (2002). Modeling pattern formation in a swarm of self-assembling robots (Technical Report TR/IRIDIA/2002-12). IRIDIA, Université Libre de Bruxelles, Belgium. Google Scholar
  189. Trianni, V., Groß, R., Labella, T. H., Şahin, E., & Dorigo, M. (2003). Evolving aggregation behaviors in a swarm of robots. In Lecture notes in artificial intelligence: Vol. 2801. Advances in artificial life: 7th European conference—ECAL 2003 (pp. 865–874). Berlin: Springer. Google Scholar
  190. Tuci, E., Trianni, V., & Dorigo, M. (2004). ‘Feeling’ the flow of time through sensorymotor coordination. Connection Science, 16(4), 301–324. Google Scholar
  191. Turgut, A. E., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008a). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2–4), 97–120. Google Scholar
  192. Turgut, A. E., Huepe, C., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008b). Modeling phase transition in self-organized mobile robot flocks. In Lecture notes in computer science: Vol. 5217. Proceedings of the 6th international conference on ant colony optimization and swarm intelligence, ANTS 2008 (pp. 108–119). Berlin: Springer. Google Scholar
  193. Turing, A. (1953). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society. Part B, 237, 37–72. Google Scholar
  194. Varghese, B., & McKee, G. (2009). A review and implementation of swarm pattern formation and transformation models. International Journal of Intelligent Computing and Cybernetics, 2(4), 786–817. MathSciNetMATHGoogle Scholar
  195. Vaughan, R. T. (2008). Massively multi-robot simulation in stage. Swarm Intelligence, 2(2–4), 189–208. Google Scholar
  196. Waibel, M., Keller, L., & Floreano, D. (2009). Genetic team composition and level of selection in the evolution of cooperation. IEEE Transactions on Evolutionary Computation, 13(3), 648–660. Google Scholar
  197. Wang, B., Lim, H. B., & Ma, D. (2009). A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 32(13–14), 1427–1436. Google Scholar
  198. Wawerla, J., Sukhatme, G. S., & Matarić, M. J. (2002). Collective construction with multiple robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2696–2701). Google Scholar
  199. Werfel, J. (2006). Extended stigmergy in collective construction. IEEE Intelligent Systems, 21, 20–28. Google Scholar
  200. Werfel, J. (2011). Distributed multi-robot algorithms for the TERMES 3D collective construction system. URL http://www.eecs.harvard.edu/ssr/publications/. Last checked on November 2012.
  201. Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. International Journal of Robotics Research, 27(3–4), 463–479. Google Scholar
  202. Werfel, J., Petersen, K., & Nagpal, R. (2011). Distributed multi-robot algorithms for the TERMES 3D collective construction system. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS). Google Scholar
  203. Wessnitzer, J., & Melhuish, C. (2003). Collective decision-making and behaviour transitions in distributed ad hoc wireless networks of mobile robots: target-hunting. In Lecture notes in computer science: Vol. 2801. Advances in artificial life (pp. 893–902). Berlin: Springer. Google Scholar
  204. Winfield, A. F. T. (2009). Towards an engineering science of robot foraging. In Distributed autonomous robotic systems 8 (pp. 185–192). Berlin: Springer. Google Scholar
  205. Winfield, A. F. T., Harper, C. J., & Nembrini, J. (2004). Towards dependable swarms and a new discipline of swarm engineering. In Lecture notes in computer science: Vol. 3342. Proceedings of the international workshop on simulation of adaptive behavior, SAB 2004 (pp. 126–142). Berlin: Springer. Google Scholar
  206. Winfield, A. F. T., Sa, J., Fernandez-Gago, M. C., Dixon, C., & Fisher, M. (2005). On formal specification of emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems, 2(4), 363–370. Google Scholar
  207. Winfield, A. F. T., Liu, W., Nembrini, J., & Martinoli, A. (2008). Modelling a wireless connected swarm of mobile robots. Swarm Intelligence, 2(2–4), 241–266. Google Scholar
  208. Wolpert, D. H., & Tumer, K. (1999). An introduction to collective intelligence (Technical Report NASA-ARC-IC-99-63). NASA Ames Research Center. Google Scholar
  209. Yang, E., & Gu, D. (2005). A survey on multiagent reinforcement learning towards multi-robot systems. In Proceedings of IEEE symposium on computational intelligence and games. Piscataway: IEEE Press. Google Scholar
  210. Yun, S., Schwager, M., & Rus, D. (2009). Coordinating construction of truss structures using distributed equal-mass partitioning. In Springer tracts in advanced robotics: Vol. 70. Proc. of the 14th international symposium on robotics research (pp. 607–623). Berlin: Springer. Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Manuele Brambilla
    • 1
  • Eliseo Ferrante
    • 1
  • Mauro Birattari
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations