Swarm Intelligence

, Volume 6, Issue 3, pp 207–232 | Cite as

An experimental analysis of design choices of multi-objective ant colony optimization algorithms

Article

Abstract

There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuristic information, how to select the best solutions for updating the pheromone information, and how to define and use weights to aggregate the different objectives. This formulation reveals more similarities than previously thought in the design choices made in existing MOACO algorithms. The main contribution of this paper is an experimental analysis of how particular design choices affect the quality and the shape of the Pareto front approximations generated by each MOACO algorithm. This study provides general guidelines to understand how MOACO algorithms work, and how to improve their design.

Keywords

Ant colony optimization Multi-objective optimization Multi-objective traveling salesman problem Experimental analysis 

Notes

Acknowledgements

The research leading to the results presented in this paper has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement nº246939. This work was also supported by the Meta-X project, funded by the Scientific Research Directorate of the French Community of Belgium. Manuel López–Ibáñez and Thomas Stützle acknowledge support of the F.R.S.-FNRS of which they are a post-doctoral researcher and a research associate, respectively.

References

  1. Alaya, I., Solnon, C., & Ghédira, K. (2007). Ant colony optimization for multi-objective optimization problems. In 19th IEEE international conference on tools with artificial intelligence (ICTAI 2007) (Vol. 1, pp. 450–457). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  2. Angus, D. (2007). Population-based ant colony optimisation for multi-objective function optimisation. In M. Randall, H. A. Abbass, & J. Wiles (Eds.), Lecture notes in computer science: Vol. 4828. Progress in artificial life (ACAL) (pp. 232–244). Heidelberg: Springer. CrossRefGoogle Scholar
  3. Angus, D., & Woodward, C. (2009). Multiple objective ant colony optimisation. Swarm Intelligence, 3(1), 69–85. CrossRefGoogle Scholar
  4. Barán, B., & Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing problem with time windows. In Proceedings of the twenty-first IASTED international conference on applied informatics, Innsbruck, Austria (pp. 97–102). Google Scholar
  5. Birattari, M., Pellegrini, P., & Dorigo, M. (2007). On the invariance of ant colony optimization. IEEE Transactions on Evolutionary Computation, 11(6), 732–742. CrossRefGoogle Scholar
  6. Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). New York: Wiley. Google Scholar
  7. Doerner, K. F., Hartl, R. F., & Reimann, M. (2003). Are COMPETants more competent for problem solving? The case of a multiple objective transportation problem. Central European Journal for Operations Research and Economics, 11(2), 115–141. MathSciNetMATHGoogle Scholar
  8. Doerner, K. F., Gutjahr, W. J., Hartl, R. F., Strauss, C., & Stummer, C. (2004). Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131, 79–99. MathSciNetMATHCrossRefGoogle Scholar
  9. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. MATHCrossRefGoogle Scholar
  10. Dorigo, M., Maniezzo, V., & Colorni, A. (1991a). The ant system: an autocatalytic optimizing process. Tech. Rep. 91-016, Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy. Google Scholar
  11. Dorigo, M., Maniezzo, V., & Colorni, A. (1991b). Positive feedback as a search strategy. Tech. Rep. 91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy. Google Scholar
  12. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics. Part B, 26(1), 29–41. CrossRefGoogle Scholar
  13. Fonseca, C. M., Paquete, L., & López-Ibáñez, M. (2006). An improved dimension-sweep algorithm for the hypervolume indicator. In Proceedings of the 2006 congress on evolutionary computation (CEC 2006) (pp. 1157–1163). Piscataway: IEEE Press. Google Scholar
  14. Gambardella, L. M., Taillard, É. D., & Agazzi, G. (1999). MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 63–76). London: McGraw-Hill. Google Scholar
  15. García-Martínez, C., Cordón, O., & Herrera, F. (2007). A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research, 180(1), 116–148. MATHCrossRefGoogle Scholar
  16. Gravel, M., Price, W. L., & Gagné, C. (2002). Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. European Journal of Operational Research, 143(1), 218–229. MATHCrossRefGoogle Scholar
  17. Grunert da Fonseca, V., Fonseca, C. M., & Hall, A. O. (2001). Inferential performance assessment of stochastic optimisers and the attainment function. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, & D. Corne (Eds.), Lecture notes in computer science: Vol. 1993. Evolutionary multi-criterion optimization (EMO 2001) (pp. 213–225). Heidelberg: Springer. CrossRefGoogle Scholar
  18. Guntsch, M., & Middendorf, M. (2003). Solving multi-objective permutation problems with population based ACO. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Lecture notes in computer science: Vol. 2632. Evolutionary multi-criterion optimization (EMO 2003) (pp. 464–478). Heidelberg: Springer. CrossRefGoogle Scholar
  19. Iredi, S., Merkle, D., & Middendorf, M. (2001). Bi-criterion optimization with multi colony ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, & D. Corne (Eds.), Lecture notes in computer science: Vol. 1993. Evolutionary multi-criterion optimization (EMO 2001) (pp. 359–372). Heidelberg: Springer. CrossRefGoogle Scholar
  20. López-Ibáñez, M., & Stützle, T. (2010a). An analysis of algorithmic components for multiobjective ant colony optimization: a case study on the biobjective TSP. In P. Collet, N. Monmarché, P. Legrand, M. Schoenauer, & E. Lutton (Eds.), Lecture notes in computer science: Vol. 5975. Artificial evolution: 9th international conference, evolution artificielle, EA 2009 (pp. 134–145). Heidelberg: Springer. Google Scholar
  21. López-Ibáñez, M., & Stützle, T. (2010b). The impact of design choices of multi-objective ant colony optimization algorithms on performance: an experimental study on the biobjective TSP. In M. Pelikan & J. Branke (Eds.), Proceedings of the genetic and evolutionary computation conference, GECCO 2010 (pp. 71–78). New York: ACM Press. Google Scholar
  22. López-Ibáñez, M., & Stützle, T. (2012a). The automatic design of multi-objective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation. doi:10.1109/TEVC.2011.2182651. Google Scholar
  23. López-Ibáñez, M., & Stützle, T. (2012b). An experimental analysis of design choices of multi-objective ant colony optimization algorithms: supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2012-006/.
  24. López-Ibáñez, M., Paquete, L., & Stützle, T. (2004). On the design of ACO for the biobjective quadratic assignment problem. In M. Dorigo et al. (Eds.), Lecture notes in computer science: Vol. 3172. Ant colony optimization and swarm intelligence, 4th international workshop, ANTS 2004 (pp. 214–225). Heidelberg: Springer. CrossRefGoogle Scholar
  25. López-Ibáñez, M., Paquete, L., & Stützle, T. (2006). Hybrid population-based algorithms for the bi-objective quadratic assignment problem. Journal of Mathematical Modelling and Algorithms, 5(1), 111–137. MathSciNetMATHCrossRefGoogle Scholar
  26. López-Ibáñez, M., Paquete, L., & Stützle, T. (2010). Exploratory analysis of stochastic local search algorithms in biobjective optimization. In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, & M. Preuss (Eds.), Experimental methods for the analysis of optimization algorithms (pp. 209–222). Berlin: Springer. CrossRefGoogle Scholar
  27. Lust, T., & Jaszkiewicz, A. (2010). Speed-up techniques for solving large-scale biobjective TSP. Computers & Operations Research, 37(3), 521–533. MathSciNetMATHCrossRefGoogle Scholar
  28. Lust, T., & Teghem, J. (2010). Two-phase Pareto local search for the biobjective traveling salesman problem. Journal of Heuristics, 16(3), 475–510. MATHCrossRefGoogle Scholar
  29. Mariano, C. E., & Morales, E. (1999). MOAQ: an ant-Q algorithm for multiple objective optimization problems. In W. Banzhaf, J. M. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J. Jakiela, & R. E. Smith (Eds.), Proceedings of the genetic and evolutionary computation conference, GECCO 1999 (pp. 894–901). San Francisco: Morgan Kaufmann. Google Scholar
  30. Paquete, L., & Stützle, T. (2009). Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Computers & Operations Research, 36(9), 2619–2631. MathSciNetMATHCrossRefGoogle Scholar
  31. Schilde, M., Doerner, K. F., Hartl, R. F., & Kiechle, G. (2009). Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence, 3(3), 179–201. CrossRefGoogle Scholar
  32. Stützle, T., & Hoos, H. H. (2000). \(\mathcal{MAX}\)\(\mathcal{MIN}\) ant system. Future Generations Computer Systems, 16(8), 889–914. CrossRefGoogle Scholar
  33. Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—a comparative case study. In A. E. Eiben, T. Bäck, M. Schoenauer, & H. P. Schwefel (Eds.), Lecture notes in computer science: Vol. 1498. Parallel problem solving from nature, PPSN V (pp. 292–301). Heidelberg: Springer. CrossRefGoogle Scholar
  34. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Grunert da Fonseca, V. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2012

Authors and Affiliations

  1. 1.CoDE–IRIDIAUniversité libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations