Advertisement

Swarm Intelligence

, Volume 6, Issue 1, pp 23–48 | Cite as

A critical analysis of parameter adaptation in ant colony optimization

  • Paola Pellegrini
  • Thomas Stützle
  • Mauro Birattari
Article

Abstract

Applying parameter adaptation means operating on parameters of an algorithm while it is tackling an instance. For ant colony optimization, several parameter adaptation methods have been proposed. In the literature, these methods have been shown to improve the quality of the results achieved in some particular contexts. In particular, they proved to be successful when applied to novel ant colony optimization algorithms for tackling problems that are not a classical testbed for optimization algorithms. In this paper, we show that the adaptation methods proposed so far do not improve, and often even worsen the performance when applied to high performing ant colony optimization algorithms for some classical combinatorial optimization problems.

Keywords

Ant colony optimization Parameter adaptation Traveling salesman problem Quadratic assignment problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, P. J. (1995). Adaptive and self-adaptive evolutionary computations. In M. Palaniswami et al. (Eds.), Computational intelligence: a dynamic systems perspective (pp. 152–163). New York: IEEE Press. Google Scholar
  2. Anghinolfi, D., Boccalatte, A., Paolucci, M., & Vecchiola, C. (2008). Performance evaluation of an adaptive ant colony optimization applied to single machine scheduling. In X. Li et al. (Eds.), LNCS: Vol. 5361. SEAL (pp. 411–420). Heidelberg: Springer. Google Scholar
  3. Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (2003). Concorde package. www.tsp.gatech.edu/concorde/downloads/codes/src/co031219.tgz.
  4. Birattari, M. (2004). On the estimation of the expected performance of a metaheuristic on a class of instances. How many instances, how many runs? (Tech. Rep. TR/IRIDIA/2004-01). IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. Google Scholar
  5. Birattari, M. (2009). Tuning metaheuristics: a machine learning perspective. Studies of computational intelligence (Vol. 197). Berlin: Springer. CrossRefzbMATHGoogle Scholar
  6. Birattari, M., Zlochin, M., & Dorigo, M. (2006). Towards a theory of practice in metaheuristics design: A machine learning perspective. Theoretical Informatics and Applications, 40(2), 353–369. CrossRefzbMATHMathSciNetGoogle Scholar
  7. Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. Langdon et al. (Eds.), GECCO 2002 (pp. 11–18). San Francisco: Morgan Kaufmann. Google Scholar
  8. Clerc, M. (2006). Particle swarm optimization. London: ISTE. CrossRefzbMATHGoogle Scholar
  9. Dorigo, M., & Gambardella, L. M. (1997). Ant Colony System: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. CrossRefGoogle Scholar
  10. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. CrossRefzbMATHGoogle Scholar
  11. Eiben, A. E., Michalewicz, Z., Schoenauer, M., & Smith, J. E. (2007). Parameter control in evolutionary algorithms. In F. G. Lobo et al. (Eds.), Studies in computational intelligence: Vol. 54. Parameter setting in evolutionary algorithms (pp. 19–46). Berlin: Springer. CrossRefGoogle Scholar
  12. Fialho, A. (2010). Adaptive operator selection for optimization. PhD thesis, Université Paris-Sud XI, Orsay, France. Google Scholar
  13. Förster, M., Bickel, B., Hardung, B., & Kókai, G. (2007). Self-adaptive ant colony optimisation applied to function allocation in vehicle networks. In GECCO’07 (pp. 1991–1998). New York: ACM. Google Scholar
  14. Hussin, M. S., & Stützle, T. (2010). Tabu search vs. simulated annealing for solving large quadratic assignment instances (Tech. Rep. TR/IRIDIA/2010-20). IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. Google Scholar
  15. Johnson, D., McGeoch, L., Rego, C., & Glover, F. (2001). 8th DIMACS implementation challenge. http://www.research.att.com/~dsj/chtsp/.
  16. Khichane, M., Albert, P., & Solnon, C. (2009). A reactive framework for ant colony optimization. In T. Stützle (Ed.), LNCS: Vol. 5851. Learning and intelligent optimizatioN (LION) (pp. 119–133). Heidelberg: Springer. CrossRefGoogle Scholar
  17. Lawler, E. L. (1963). The quadratic assignment problem. Management Science, 9, 586–599. CrossRefzbMATHMathSciNetGoogle Scholar
  18. Lawler, E. L., Lenstra, J. K., Rinnooy, Kan A. H. G., & Shmoys, D. B. (1985). The traveling salesman problem: a guided tour of combinatorial optimization. New York: Wiley. zbMATHGoogle Scholar
  19. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The irace package, iterated race for automatic algorithm configuration (Tech. Rep. TR/IRIDIA/2011-04). IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. Google Scholar
  20. Martens, D., Backer, M. D., Haesen, R., Vanthienen, J., Snoeck, M., & Baesens, B. (2007). Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation, 11(5), 651–665. CrossRefGoogle Scholar
  21. Pellegrini, P., Stützle, T., & Birattari, M. (2010a). Companion of a critical analysis of parameter adaptation in ant colony optimization. http://iridia.ulb.ac.be/supp/IridiaSupp2010-013/. IRIDIA Supplementary page, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.
  22. Pellegrini, P., Stützle, T., & Birattari, M. (2010b). Off-line and on-line tuning: a study on \(\mathcal{M}\mathcal{A}\mathcal{X}\)\(\mathcal{M}\mathcal{I}\mathcal{N}\) ant system for TSP. In M. Dorigo et al. (Eds.), LNCS: Vol. 6234. ANTS 2010: seventh international conference on swarm intelligence (pp. 239–250). Heidelberg: Springer. Google Scholar
  23. Randall, M. (2004). Near parameter free ant colony optimisation. In M. Dorigo et al. (Eds.), LNCS: Vol. 3172. ANTS 2004: fourth international conference on ant colony optimization and swarm intelligence (pp. 374–381). Heidelberg: Springer. CrossRefGoogle Scholar
  24. Stützle, T. (2002). ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem. http://www.aco-metaheuristic.org/aco-code.
  25. Stützle, T., & Hoos, H. H. (2000). MAXMIN ant system. Future Generations Computer Systems, 16(8), 889–914. CrossRefGoogle Scholar
  26. Stützle, T., López-Ibánez, M., Pellegrini, P., Maur, M., Montes de Oca, M. A., Birattari, M., & Dorigo, M. (2011, to appear). Parameter adaptation in ant colony optimization. In Y. Hamadi et al. (Eds.), Autonomous search. Berlin: Springer. Google Scholar
  27. Taillard, E. (1991). Robust taboo search for the quadratic assignment problem. Parallel Computing, 17, 443–455. CrossRefMathSciNetGoogle Scholar
  28. Taillard, E. (1995). Comparison of iterative searches for the quadratic assignment problem. Location Science, 3, 87–105. CrossRefzbMATHGoogle Scholar
  29. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Paola Pellegrini
    • 1
  • Thomas Stützle
    • 1
  • Mauro Birattari
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations