Swarm Intelligence

, Volume 5, Issue 3–4, pp 283–304 | Cite as

Task partitioning in swarms of robots: an adaptive method for strategy selection

  • Giovanni Pini
  • Arne Brutschy
  • Marco Frison
  • Andrea Roli
  • Marco Dorigo
  • Mauro Birattari


Task partitioning is the decomposition of a task into two or more sub-tasks that can be tackled separately. Task partitioning can be observed in many species of social insects, as it is often an advantageous way of organizing the work of a group of individuals. Potential advantages of task partitioning are, among others: reduction of interference between workers, exploitation of individuals’ skills and specializations, energy efficiency, and higher parallelism. Even though swarms of robots can benefit from task partitioning in the same way as social insects do, only few works in swarm robotics are dedicated to this subject. In this paper, we study the case in which a swarm of robots has to tackle a task that can be partitioned into a sequence of two sub-tasks. We propose a method that allows the individual robots in the swarm to decide whether to partition the given task or not. The method is self-organized, relies on the experience of each individual, and does not require explicit communication between robots. We evaluate the method in simulation experiments, using foraging as testbed. We study cases in which task partitioning is preferable and cases in which it is not. We show that the proposed method leads to good performance of the swarm in both cases, by employing task partitioning only when it is advantageous. We also show that the swarm is able to react to changes in the environmental conditions by adapting the behavior on-line. Scalability experiments show that the proposed method performs well across all the tested group sizes.


Task partitioning Foraging Swarm robotics Self-organization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MP4 3.86 MB)

11721_2011_60_MOESM2_ESM.mp4 (26.3 mb)
(MP4 26.2 MB)


  1. Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems. In Proceedings of the 1st international joint conference on autonomous agents and multiagent systems (pp. 1090–1097). New York: ACM Press. CrossRefGoogle Scholar
  2. Aho, A. (1983). Data structures and algorithms. Boston: Addison-Wesley. zbMATHGoogle Scholar
  3. Anderson, C., & Jadin, J. L. V. (2001). The adaptive benefit of leaf transfer in Atta colombica. Insectes Sociaux, 48, 404–405. CrossRefGoogle Scholar
  4. Anderson, C., & Ratnieks, F. L. W. (1999). Worker allocation in insect societies: coordination of nectar foragers and nectar receivers in honey bee (Apis mellifera) colonies. Behavioral Ecology and Sociobiology, 46(2), 73–81. CrossRefGoogle Scholar
  5. Anderson, C., Boomsma, J. J., & Bartholdi, J. J. (2002). Task partitioning in insect societies: bucket brigades. Insectes Sociaux, 49, 171–180. CrossRefGoogle Scholar
  6. Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Şahin & W. M. Spears (Eds.), Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 1–9). Berlin: Springer. CrossRefGoogle Scholar
  7. Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1996). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London. Series B, 263(1376), 1565–1569. CrossRefGoogle Scholar
  8. Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1999). Adaptive task allocation inspired by a model of division of labor in social insects. In D. Lundh, B. Olsson & A. Narayanan (Eds.), Bio-computing and emergent computation (pp. 36–45). Skövde: World Scientific. Google Scholar
  9. Brutschy, A., Pini, G., Baiboun, N., Decugnière, A., & Birattari, M. (2010). The IRIDIA TAM: a device for task abstraction for the e-puck robot. Technical Report TR/IRIDIA/2010-015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium. Google Scholar
  10. Cox, D. R., & Reid, N. (2000). The theory of the design of experiments. London: Chapman and Hall/CRC. zbMATHGoogle Scholar
  11. Fontan, M. S., & Matarić, M. J. (1996). A study of territoriality: the role of critical mass in adaptive task division. In P. Maes, M. J. Matarić, J.-A. Meyer, J. Pollack & S. Wilson (Eds.), From animals to animats 4: proceedings of the 4th international conference of simulation of adaptive behavior (pp. 553–561). Cambridge: MIT Press. Google Scholar
  12. Fowler, H. G., & Robinson, S. W. (1979). Foraging by Atta sexdens (Formicidae: Attini): Seasonal patterns, caste and efficiency. Ecological Entomology, 4(3), 239–247. CrossRefGoogle Scholar
  13. Gordon, D. M. (1999). Interaction patterns and task allocation in ant colonies. In C. Detrain, J. M. Pasteels & J.-L. Deneubourg (Eds.), Information processing in social insects (pp. 51–67). Basel: Birkhäuser. CrossRefGoogle Scholar
  14. Hart, A. G., & Ratnieks, F. L. W. (2000). Leaf caching in Atta leafcutting ants: discrete cache formation through positive feedback. Animal Behaviour, 59(3), 587–591. CrossRefGoogle Scholar
  15. Hart, A. G., & Ratnieks, F. L. W. (2001a). Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Animal Behaviour, 62(2), 227–234. CrossRefGoogle Scholar
  16. Hart, A. G., & Ratnieks, F. L. W. (2001b). Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting Atta cephalotes. Behavioral Ecology and Sociobiology, 49, 387–392. CrossRefGoogle Scholar
  17. Hart, A., Anderson, C., & Ratnieks, F. L. W. (2002). Task partitioning in leafcutting ants. Acta Ethologica, 5, 1–11. CrossRefGoogle Scholar
  18. Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., & Fowler, H. (1980). Foraging by bucket-brigade in leaf-cutter ants. Biotropica, 12(3), 210–213. CrossRefGoogle Scholar
  19. Jeanne, R. L. (1986). The evolution of the organization of work in social insects. Monitore Zoologico Italiano, 20, 119–133. Google Scholar
  20. Jeanne, R. L. (2002). Social complexity in the Hymenoptera, with special attention to the wasps. In T. Kikuchi, N. Azuma, & S. Higashi (Eds.), Proceedings of the 14th congress of the IUSSI (pp. 81–130). Sapporo: Hokkaido University Press. Google Scholar
  21. Kalra, N., & Martinoli, A. (2006). Comparative study of market-based and threshold-based task allocation. In M. Gini & R. Voyles (Eds.), Distributed autonomous robotic systems 7 (pp. 91–101). Tokyo: Springer. CrossRefGoogle Scholar
  22. Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: self-organized task allocation in a population of up to twelve mobile robots. Robotics and Autonomous Systems, 30(1–2), 65–84. CrossRefGoogle Scholar
  23. Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25. CrossRefGoogle Scholar
  24. Lein, A., & Vaughan, R. (2008). Adaptive multi-robot bucket brigade foraging. In S. Bullock, J. Noble, R. Watson & M. A. Bedau (Eds.), Artificial life XI: proceedings of the 11th international conference on the simulation and synthesis of living systems (pp. 337–342). Cambridge: MIT Press. Google Scholar
  25. Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. O., & Verza, S. S. (2003). The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology, 42(1), 87–91. Google Scholar
  26. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J. C., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, P. J. D. Torres & C. M. O. Alves (Eds.), Proceedings of the 9th conference on autonomous robot systems and competitions (pp. 59–65). Castelo Branco: IPCB: Instituto Politècnico de Castelo Branco. Google Scholar
  27. Østergaard, E. H., Sukhatme, G. S., & Matarić, M. J. (2001). Emergent bucket brigading: a simple mechanisms for improving performance in multi-robot constrained-space foraging tasks. In AGENTS ’01: proceedings of the 5th international conference on autonomous agents (pp. 29–30). New York: ACM Press. CrossRefGoogle Scholar
  28. Parker, L. E. (1998). ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation, 14(2), 220–240. CrossRefGoogle Scholar
  29. Parker, C. A. C., & Zhang, H. (2010). Collective unary decision-making by decentralized multiple-robot systems applied to the task-sequencing problem. Swarm Intelligence, 4(3), 199–220. CrossRefGoogle Scholar
  30. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutiérrez, A., Gambardella, L. M., & Dorigo, M. (2011). ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5027–5034). Los Alamitos: IEEE Comput. Soc. Google Scholar
  31. Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2011a). Task partitioning in swarms of robots: reducing performance losses due to interference at shared resources. In J. A. Cetto et al. (Eds.), LNEE: Vol. 85. Informatics in control, automation and robotics: selected papers from the international conference on informatics in control, automation and robotics (pp. 217–228). Berlin: Springer. Google Scholar
  32. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011b). Task partitioning in swarms of robots: an adaptive method for strategy selection—online supplementary material.
  33. Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Sociaux, 46(2), 95–108. CrossRefGoogle Scholar
  34. Reyes, J. L., & Fernández Haeger, J. (1999). Sequential co-operative load transport in the seed-harvesting ant Messor barbarus. Insectes Sociaux, 46, 119–125. CrossRefGoogle Scholar
  35. Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In E. Şahin & W. M. Spears (Eds.), Lecture notes in computer science: Vol. 3342. Swarm robotics (pp. 10–20). Berlin: Springer. CrossRefGoogle Scholar
  36. Scheidler, A., Merkle, D., & Middendorf, M. (2008). Stability and performance of ant queue inspired task partitioning methods. Theory in Biosciences, 127(2), 149–161. CrossRefMathSciNetGoogle Scholar
  37. Seeley, T. D. (1989). Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behavioral Ecology and Sociobiology, 24, 181–199. CrossRefGoogle Scholar
  38. Shell, D. J., & Matarić, M. J. (2006). On foraging strategies for large-scale multi-robot systems. In Proceedings of the 19th IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2717–2723). Pitscataway: IEEE Press. Google Scholar
  39. Theraulaz, G., Bonabeau, E., Solé, R. V., Schatz, B., & Deneubourg, J.-L. (2002). Task partitioning in a ponerine ant. Journal of Theoretical Biology, 215, 481–489. CrossRefGoogle Scholar
  40. Winfield, A. F. T. (2009). Towards an engineering science of robot foraging. In H. Asama, H. Kurokawa, J. Ota & K. Sekiyama (Eds.), Distributed autonomous robotic systems 8 (pp. 185–192). Berlin: Springer. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  • Giovanni Pini
    • 1
  • Arne Brutschy
    • 1
  • Marco Frison
    • 2
  • Andrea Roli
    • 2
  • Marco Dorigo
    • 1
  • Mauro Birattari
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.DEIS-Cesena, Alma Mater StudiorumUniversità di BolognaCesenaItaly

Personalised recommendations