Swarm Intelligence

, Volume 5, Issue 2, pp 97–119 | Cite as

Self-organised path formation in a swarm of robots

Article

Abstract

In this paper, we study the problem of exploration and navigation in an unknown environment from an evolutionary swarm robotics perspective. In other words, we search for an efficient exploration and navigation strategy for a swarm of robots, which exploits cooperation and self-organisation to cope with the limited abilities of the individual robots. The task faced by the robots consists in the exploration of an unknown environment in order to find a path between two distant target areas. The collective strategy is synthesised through evolutionary robotics techniques, and is based on the emergence of a dynamic structure formed by the robots moving back and forth between the two target areas. Due to this structure, each robot is able to maintain the right heading and to efficiently navigate between the two areas. The evolved behaviour proved to be effective in finding the shortest path, adaptable to new environmental conditions, scalable to larger groups and larger environment size, and robust to individual failures.

Keywords

Evolutionary robotics Swarm robotics Self-organisation Path formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPEG 27.1 MB)

(MPEG 27.4 MB)

(MPEG 59.8 MB)

(MPEG 12.3 MB)

References

  1. Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping: part II. IEEE Robotics & Automation Magazine, 13(3), 108–117. CrossRefGoogle Scholar
  2. Baldassarre, G., & Nolfi, S. (2009). Strengths and synergies of evolved and designed controllers: a study within collective robotics. Journal of Artificial Intelligence, 173, 857–875. CrossRefGoogle Scholar
  3. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., & Mondada, F. (2010). The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) (pp. 4187–4193). New York: IEEE Press. Google Scholar
  4. Burgard, W., Moors, M., Stachniss, C., & Schneider, F.E. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3), 376–386. CrossRefGoogle Scholar
  5. De Greef, J., & Nolfi, S. (2010). Evolution of implicit and explicit communication in a group of mobile robots. In S. Nolfi & M. Mirolli (Eds.), Evolution of communication and language in embodied agents (pp. 179–214). Berlin: Springer. CrossRefGoogle Scholar
  6. Detrain, C., & Denebourg, J.-L. (2009). Collective decision and foraging patterns in ants and honeybees. Advances in Insect Physiology, 35, 123–173. CrossRefGoogle Scholar
  7. Dorigo, M., & Şahin, E. (2004). Swarm robotics—special issue editorial. Autonomous Robots, 17(2–3), 111–113. CrossRefGoogle Scholar
  8. Drogoul, A., & Ferber, J. (1993). From Tom Thumb to the Dockers: Some experiments with foraging robots. In J.-A. Meyer, H. Roitblat, & S. W. Wilson (Eds.), From animals to animats 2. Proceedings of the second international conference on simulation of adaptive behavior (SAB 92) (pp. 451–459). Cambridge: MIT Press. Google Scholar
  9. Ducatelle, F., Di Caro, G. A., Pinciroli, C., & Gambardella, L. M. (2011a). Self-organized cooperation between robotic swarms. Swarm Intelligence, 5(2) (this issue). Google Scholar
  10. Ducatelle, F., Di Caro, G. A., Pinciroli, C., Mondada, F., & Gambardella, L. M. (2011b). Communication assisted navigation in robotic swarms: self-organization and cooperation. Technical report IDISA-04-11, IDISA, Lugano, Switzerland. Submitted to IROS 2011. Google Scholar
  11. Filliat, D., & Meyer, J.-A. (2003). Map-based navigation in mobile robots—I. A review of localization strategies. Journal of Cognitive Systems Research, 4, 243–282. CrossRefGoogle Scholar
  12. Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (2007). Evolutionary conditions for the emergence of communication in robots. Current Biology, 17, 514–519. CrossRefGoogle Scholar
  13. Floreano, D., Husband, P., & Nolfi, S. (2008). Evolutionary robotics. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (pp. 1423–1451). Berlin: Springer. CrossRefGoogle Scholar
  14. Floreano, D., Mitri, S., & Hubert, J. (2010). A robotic platform for studying the evolution of communication. In S. Nolfi & M. Mirolli (Eds.), Evolution of communication and language in embodied agents (pp. 303–306). Berlin: Springer. CrossRefGoogle Scholar
  15. Fujisawa, R., Imamura, H., Hashimoto, T., & Matsuno, F. (2008). Communication using pheromone field for multiple robots. In Proceedings of the 2008 IEEE/RSJ international conference on intelligent robots and systems (IROS 2008) (pp. 1391–1396). New York: IEEE Press. Google Scholar
  16. Garnier, S., Tâche, F., Combe, M., Grimal, A., & Theraulaz, G. (2007). Alice in pheromone land: an experimental setup for the study of ant-like robots. In Proceedings of the 2007 IEEE swarm intelligence symposium (SIS 2007) (pp. 37–44). New York: IEEE Press. CrossRefGoogle Scholar
  17. Gigliotta, O., & Nolfi, S. (2008). On the coupling between agent internal and agent/environmental dynamics: Development of spatial representations in evolving autonomous robots. Adaptive Behavior, 16, 148–165. CrossRefGoogle Scholar
  18. Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenchaften, 76, 579–581. CrossRefGoogle Scholar
  19. Gutiérrez, A., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-making based on social odometry. Neural Computing & Applications, 19(6), 807–823. CrossRefGoogle Scholar
  20. Hafner, V. V. (2005). Cognitive maps in rats and robots. Adaptive Behavior, 13, 87–96. CrossRefGoogle Scholar
  21. Hauert, S., Zufferey, J.-C., & Floreano, D. (2009a). Evolved swarming without positioning information: an application in aerial communication relay. Autonomous Robots, 26(1), 21–32. CrossRefGoogle Scholar
  22. Hauert, S., Zufferey, J.-C., & Floreano, D. (2009b). Reverse-engineering of artificially evolved controllers for swarms of robots. In Proceedings of the 2009 IEEE congress on evolutionary computation (CEC’09) (pp. 55–61). New York: IEEE Press. CrossRefGoogle Scholar
  23. Lambrinos, D., Kobayashi, H., Pfeifer, R., Maris, M., Labhart, T., & Wehner, R. (1997). An autonomous agent navigating with a polarized light compass. Adaptive Behavior, 6(1), 131–161. CrossRefGoogle Scholar
  24. Mamei, M., & Zambonelli, F. (2007). Pervasive pheromone-based interaction with RFID tags. ACM Transactions on Autonomous and Adaptive Systems, 2(2), 1–28. CrossRefGoogle Scholar
  25. Martinelli, A., Pont, F., & Siegwart, R. (2005). Multi-robot localization using relative observations. In Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA 2005) (pp. 2797–2802). New York: IEEE Press. CrossRefGoogle Scholar
  26. Mayet, R., Roberz, J., Schmickl, T., & Crailsheim, K. (2010). Antbots: a feasible visual emulation of pheromone trails for swarm robots. In M. Dorigo, M. Birattari, G. A. Di Caro, R. Doursat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella, R. Groß, E. Şahin, T. Stützle, & H. Sayama (Eds.), Lecture notes in computer science: Vol. 6234. Proceedings of the 7th international conference on swarm intelligence (ANTS 2010) (pp. 84–94). Berlin: Springer. Google Scholar
  27. Maynard-Smith, J., & Harper, D. G. (2003). Animal signals. London: Oxford University Press. Google Scholar
  28. Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hülse, S., Plümpe, T., Schaupp, F., Schüttler, E., Stach, S., Stindt, J., Stollhoff, N., & Watzl, S. (2005). Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 3040–3045. CrossRefGoogle Scholar
  29. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, P. J. D. Torres, & C. M. O. Alves (Eds.), Proceedings of the 9th conference on autonomous robot systems and competitions (Vol. 1, pp. 59–65). IPCB: Instituto Politécnico de Castelo Branco, Portugal. Google Scholar
  30. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. Cambridge: MIT Press/Bradford Books. Google Scholar
  31. Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm. Self-organised strategies to find your way home. Swarm Intelligence, 2(1), 1–23. CrossRefGoogle Scholar
  32. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711. CrossRefGoogle Scholar
  33. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press. Google Scholar
  34. Østergaard, E. H., Sukhatme, G. S., & Matarić, M. J. (2001). Emergent bucket brigading: a simple mechanism for improving performance in multi-robot constrained-space foraging tasks. In Proceedings of the fifth international conference on autonomous agents (pp. 2219–2223). New York: ACM Press. Google Scholar
  35. Payton, D., Daily, M., Estkowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324. CrossRefMATHGoogle Scholar
  36. Pfingsthorn, M., Slamet, B., & Visser, A. (2008). A scalable hybrid multi-robot SLAM method for highly detailed maps. In U. Visser, F. Ribeiro, T. Ohashi, & F. Dellaert (Eds.), Lecture notes in computer science: Vol. 5001. RoboCup 2007: robot soccer world cup XI (pp. 457–464). Berlin: Springer. CrossRefGoogle Scholar
  37. Rekleitis, I., Dudek, G., & Milios, E. (2001). Multi-robot collaboration for robust exploration. Annals of Mathematics and Artificial Intelligence, 31, 7–40. CrossRefGoogle Scholar
  38. Roberts, J. F., Zufferey, J.-C., & Floreano, D. (2008). Energy management for indoor hovering robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2008) (pp. 1242–1247). New York: IEEE Press. Google Scholar
  39. Russell, A., Thiel, D., Deveza, R., & Mackay-Sim, A. (1994). Sensing odour trails for mobile robot navigation. In Proceedings of the 1994 IEEE international conference on robotics and automation (ICRA’94) (pp. 2672–2677). New York: IEEE Press. CrossRefGoogle Scholar
  40. Sadat, S. A., & Vaughan, R. T. (2010). SO-LOST an ant-trail algorithm for multi-robot navigation with active interference reduction. In H. Fellermann, M. Dorr, M. Hanczyc, L. Ladegaard Laursen, S. Maurer, D. Merkle, P.-A. Monnard, K. Støy, & S. Rasmussen (Eds.), Artificial life XII: proceedings of the twelfth international conference on the simulation and synthesis of living systems (pp. 687–693). Cambridge: MIT Press. Google Scholar
  41. Schmickl, T., & Crailsheim, K. (2008). Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Autonomous Robots, 25, 171–188. CrossRefGoogle Scholar
  42. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423, 623–656. MATHMathSciNetGoogle Scholar
  43. Sperati, V., Trianni, V., & Nolfi, S. (2010). Evolution of self-organised path formation in a swarm of robots. In M. Dorigo, M. Birattari, G. A. Di Caro, R. Doursat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella, R. Gross, E. Şahin, T. Stützle, & H. Sayama (Eds.), Lecture notes in computer science: Vol. 6234. Proceedings of the 7th international conference on swarm intelligence (ANTS 2010) (pp. 155–166). Berlin: Springer. Google Scholar
  44. Stirling, T., Wischmann, S., & Floreano, D. (2010). Energy-efficient indoor search by swarms of simulated flying robots without global information. Swarm Intelligence, 4, 117–143. CrossRefGoogle Scholar
  45. Thrun, S. (2003). Robotic mapping: a survey. In G. Gerhard Lakemeyer & B. Nebel (Eds.), Exploring artificial intelligence in the new millennium (pp. 1–35). San Francisco: Morgan Kaufmann. Google Scholar
  46. Thrun, S., & Liu, Y. (2005). Multi-robot SLAM with sparse extended information filters. In P. Dario & R. Chatila (Eds.), Springer tracts in advanced robotics: Vol. 15. Robotics research. The eleventh international symposium (pp. 254–266). Berlin: Springer. Google Scholar
  47. Trianni, V. (2008). Studies in computational intelligence: Vol. 108. Evolutionary swarm robotics. Evolving self-organising behaviours in groups of autonomous robots. Berlin: Springer. Google Scholar
  48. Trianni, V., & Nolfi, S. (2011). Engineering the evolution of self-organising behaviours in swarm robotics: A case study. Artificial Life, 17(3) (to appear). Google Scholar
  49. Vaughan, R. T., Støy, K., Sukhatme, G. S., & Matarić, M. J. (2002). LOST localization-space trails for robot teams. IEEE Transactions on Robotics and Automation, 18(5), 796–812. CrossRefGoogle Scholar
  50. Vickerstaff, R. J., & Di Paolo, E. A. (2005). Evolving neural models of path integration. Journal of Experimental Biology, 208, 3349–3366. CrossRefGoogle Scholar
  51. Wehner, R. (2003). Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology, 189(8), 579–588. CrossRefGoogle Scholar
  52. Werger, B., & Matarić, M. J. (1996). Robotic “food” chains: Externalization of state and program for minimal-agent foraging. In P. Maes, M. J. Matarić, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From animals to animats 4. Proceedings of the fourth international conference on simulation of adaptive behavior (SAB 96) (pp. 625–634). Cambridge: MIT Press. Google Scholar
  53. Zeil, J., Boeddeker, N., & Stürzl, W. (2009). Visual homing in insects and robots. In D. Floreano, J.-C. Zufferey, M. V. Srinivasan, & C. Ellington (Eds.), Flying insects and robots (pp. 87–100). Berlin: Springer. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  1. 1.Istituto di Scienze e Tecnologie della CognizioneConsiglio Nazionale delle RicercheRomeItaly
  2. 2.IRIDIA-CoDE, ULBBrusselsBelgium

Personalised recommendations