Swarm Intelligence

, Volume 5, Issue 1, pp 19–43 | Cite as

Termites as models of swarm cognition

  • J. Scott TurnerEmail author


Eusociality has evolved independently at least twice among the insects: among the Hymenoptera (ants and bees), and earlier among the Isoptera (termites). Studies of swarm intelligence, and by inference, swarm cognition, have focused largely on the bees and ants, while the termites have been relatively neglected. Yet, termites are among the world’s premier animal architects, and this betokens a sophisticated swarm intelligence capability. In this article, I review new findings on the workings of the mound of Macrotermes which clarify how these remarkable structures work, and how they come to be built. Swarm cognition in these termites is in the form of “extended” cognition, whereby the swarm’s cognitive abilities arise both from interaction amongst the individual agents within a swarm, and from the interaction of the swarm with the environment, mediated by the mound’s dynamic architecture. The latter provides large scale “cognitive maps” which enable termite swarms to assess the functional state of their structure and to guide repair efforts where necessary. The crucial role of the built environment in termite swarm cognition also points to certain “swarm cognitive disorders”, where swarms can be pushed into anomalous activities by manipulating crucial structural and functional attributes of the termite system of “extended cognition.”


Swarm Cognition Termites Macrotermes Stigmergy Superorganism Social insect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11721_2010_49_MOESM1_ESM.f4v (19.6 mb)
F4V 19.6 MB
11721_2010_49_MOESM2_ESM.f4v (24.9 mb)
F4V 24.9 MB
11721_2010_49_MOESM3_ESM.f4v (63.1 mb)
F4V 63 MB


  1. Aanen, D. K., Eggleton, P., Rouland-Lefèvre, C., Guldberg-Frøslev, T., Rosendahl, S., & Boomsma, J. J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences (USA), 99(23), 14887–14892. CrossRefGoogle Scholar
  2. Agosti, D., & Johnson, N. F. (2005). Antbase. World Wide Web electronic publication., version (05/2005). Available at
  3. Batra, S. W. T., & Batra, L. R. (1967). The fungus gardens of insects. Scientific American, 217, 112–120. CrossRefGoogle Scholar
  4. Batra, L. R., & Batra, S. W. T. (1979). Termite-fungus mutualism. In L. R. Batra (Ed.), Insect–fungus symbiosis. Nutrition, mutualism and commensalism (pp. 117–163). New York: Wiley. Google Scholar
  5. Bechara, A. (2002). The neurology of social cognition. Brain, 125, 1673–1675. CrossRefGoogle Scholar
  6. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence. From natural to artificial systems. New York: Oxford University Press. zbMATHGoogle Scholar
  7. Collins, N. M. (1979). The nests of Macrotermes bellicosus (Smeathman) from Mokwa, Nigeria. Insectes Sociaux, 26(3), 240–246. CrossRefGoogle Scholar
  8. Courtois, P. J., & Heymans, F. (1991). A simulation of the construction process of a termite nest. Journal of Theoretical Biology, 153, 469–475. CrossRefGoogle Scholar
  9. Dangerfield, J. M., McCarthy, T. S., & Ellery, W. N. (1998). The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14, 507–520. CrossRefGoogle Scholar
  10. Darlington, J. P. E. C. (1985). The structure of mature mounds of the termite Macrotermes michaelseni in Kenya. Insect Science and Its Application, 6(2), 149–156. Google Scholar
  11. Darlington, J. P. E. C. (1986). The structure of mature mounds of the termite Macrotermes michaelseni in Kenya. Insect Science and Its Application, 6, 149–156. Google Scholar
  12. Darlington, J. P. E. C. (1990). Populations in nests of the termite Macrotermes subhyalinus in Kenya. Insectes Sociaux, 37(2), 158–168. CrossRefMathSciNetGoogle Scholar
  13. Darlington, J. P. E. C. (1994). Nutrition and evolution in fungus-growing termites. In J. H. Hunt & C. A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 105–130). Boulder: Westview Press. Google Scholar
  14. Darlington, J. P. E. C., Zimmerman, P. R., Greenberg, J., Westberg, C., & Bakwin, P. (1997). Production of metabolic gases by nests of the termite Macrotermes jeaneli in Kenya. Ecology Journal of Tropical, 13, 491–510. CrossRefGoogle Scholar
  15. Golley, F. B. (1993). A history of the ecosystem concept in ecology. New Haven: Yale University Press. Google Scholar
  16. Grassé, P.-P. (1959). La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétationdu comportement des termites constructeurs. Insectes Sociaux, 6, 41–80. CrossRefGoogle Scholar
  17. Harris, W. V. (1956). Termite mound building. Insectes Sociaux, 3(2), 261–268. CrossRefGoogle Scholar
  18. Hutchins, E. (2000). Cognition in the wild. Cambridge: MIT Press. Google Scholar
  19. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.) (1991). Principles of neural science. New York: Elsevier. Google Scholar
  20. Krishna, K., & Weesner, F. (1969). Biology of termites. New York: Academic Press. Google Scholar
  21. Lüscher, M. (1961). Air conditioned termite nests. Scientific American, 205(1), 138–145. CrossRefGoogle Scholar
  22. Michener, C. D. (2000). The bees of the world. Baltimore: Johns Hopkins Press. Google Scholar
  23. Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton (Ed.), Artificial life III (pp. 417–445). Reading: Addison-Wesley. Google Scholar
  24. Mitchell, W. (1977). Ecological effects of termite mounds. Wild Rhodesia, 14, 11–14. Google Scholar
  25. Moritz, R. F. A., & Southwick, E. E. (1992). Bees as superorganisms. An evolutionary reality. Berlin: Springer. Google Scholar
  26. Novikoff, A. B. (1945). The concept of integrative levels and biology. Science, 101(2618), 209–215. CrossRefGoogle Scholar
  27. Rohrmann, G. F. (1978). The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae (Insecta, Isoptera). Pedobiologia, 18, 89–98. Google Scholar
  28. Rouland-Lefevre, C. (2000). Symbiosis with fungi. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 289–306). Dordrecht: Kluwer Academic. Google Scholar
  29. Turner, J. S. (1994). Ventilation and thermal constancy of a colony of a southern African termite (Odontotermes transvaalensis: Macrotermitinae). Journal of Arid Environments, 28, 231–248. CrossRefGoogle Scholar
  30. Turner, J. S. (2001). On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange. Physiological and Biochemical Zoology, 74(6), 798–822. CrossRefGoogle Scholar
  31. Turner, J. S. (2002). A superorganism’s fuzzy boundary. Natural History, 111(6), 62–67. Google Scholar
  32. Turner, J. S. (2005). Extended physiology of an insect-built structure. American Entomologist, 51(1), 36–38. Google Scholar
  33. Turner, J. S. (2009a). Cognitive trap demo. Available at
  34. Turner, J. S. (2009b). A swarm cognitive trap. Macrotermes michaelseni. Available at
  35. Turner, J. S. (2009c). Termite drinkers. Available at
  36. Turner, J. S., & Soar, R. C. (2008). Beyond biomimicry: What termites can tell us about realizing the living building. In I. Wallis, L. Bilan, M. Smith, & A. S. Kazi (Eds.), Industrialised, integrated, intelligent sustainable construction (pp. 233–248). London, I3CON BSRIA. Google Scholar
  37. van der Westhuizen, G. C. A., & Eicker, A. (1990). Species of Termitomyces occurring in South Africa. Mycological Research, 94(7), 923–937. CrossRefGoogle Scholar
  38. Weir, J. S. (1973). Air flow, evaporation and mineral accumulation in mounds of Macrotermes subhyalinus. Journal of Animal Ecology, 42, 509–520. CrossRefGoogle Scholar
  39. Wheeler, W. M. (1911). The ant colony as an organism. Journal of Morphology, 22, 302–325. CrossRefGoogle Scholar
  40. Wilson, E. O. (1971). The insect societies. Cambridge: Belknap/Harvard University Press. Google Scholar
  41. Wood, T. G., & Thomas, R. J. (1989). The mutualistic association between Macrotermitinae and Termitomyces. In N. Wilding, N. M. Collins, P. M. Hammond, & J. F. Webber (Eds.), Insect-fungus interactions (pp. 69–92). London: Academic Press. Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Environmental and Forest BiologySUNY College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations