Swarm Intelligence

, Volume 4, Issue 4, pp 247–273 | Cite as

On artificial immune systems and swarm intelligence

Article

Abstract

This position paper explores the nature and role of two bio-inspired paradigms, namely Artificial Immune Systems (AIS) and Swarm Intelligence (SI). We argue that there are many aspects of AIS that have direct parallels with SI and examine the role of AIS and SI in science and also in engineering, with the primary focus being on the immune system. We explore how in some ways, algorithms from each area are similar, but we also advocate, and explain, that rather than being competitors, AIS and SI are complementary tools and can be used effectively together to solve complex engineering problems.

Keywords

Artificial immune systems Swarm intelligence Swarm robotics Immunology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C., Hinneburg, A., & Keim, D. (2001). On the surprising behavior of distance metrics in high dimensional space. In J. Van den Bussche & V. Vianu (Eds.), Lecture notes in computer science : Vol. 1973. Database theory—ICDT 2001, 8th international conference, proceedings (pp. 420–434). Berlin: Springer. Google Scholar
  2. Andrews, P. S. (2008). An investigation of a methodology for the development of artificial immune systems: A case study in receptor degeneracy. PhD thesis, Department of Computer Science, University of York, UK. Google Scholar
  3. Arvind, D., & Wong, K. (2004). Speckled computing: Disruptive technology for networked information appliances. In IEEE international symposium on consumer electronics 2004, ISCE 2004 (pp. 219–223). Piscataway: IEEE Press. CrossRefGoogle Scholar
  4. Bernaschi, M., & Castiglione, F. (2001). Design and implementation of an immune system simulator. Computers in Biology and Medicine, 31, 303–331. CrossRefGoogle Scholar
  5. Bersini, H. (2001). Self-assertion versus self-recognition: A tribute to Francisco Varela. In J. Timmis & P. J. Bentley (Eds.), Proceedings of the first international conference on artificial immune systems, ICARIS 2002 (pp. 107–112). Kent: University of Kent Printing Unit. Google Scholar
  6. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press. MATHGoogle Scholar
  7. Chtanova, T., Schaeffer, M., Han, S., van Dooren, G., Nollmann, M., Herzmark, P., Chan, S. W., Satija, H., Camfield, K., Aaron, H., Striepen, B., & Robey, E. (2008). Dynamics of neutrophil migration in lymph nodes during infection. Immunity, 29(3), 487–496. CrossRefGoogle Scholar
  8. Coelho, G., & Von Zuben, F. J. (2006). omni-aiNet: An immune-inspired approach for omni optimization. In H. Bersini & J. Carneiro (Eds.), Lecture notes in computer science : Vol. 4163. Artificial immune systems, 5th international conference, ICARIS 2006 (pp. 294–308). Berlin: Springer. CrossRefGoogle Scholar
  9. Cohen, I. R. (2000). Tending Adam’s garden: Evolving the cognitive immune self. London: Elsevier Academic Press. Google Scholar
  10. Davoudani, D., & Hart, E. (2008). Computing the state of specknets: An immune inspired approach. In International symposium on performance evaluation of computer and telecommunication systems, 2008, SPECTS 2008 (pp. 52–59). Piscataway: IEEE Press. Google Scholar
  11. Davoudani, D., Hart, E., & Paechter, B. (2007). An immune-inspired approach to speckled computing. In L. N. de Castro, F. J. Von Zuben, & H. Knidel (Eds.), Lecture notes in computer science : Vol. 4628. Artificial immune systems, 6th international conference, ICARIS 2007 (pp. 288–299). Berlin: Springer. CrossRefGoogle Scholar
  12. Davoudani, D., Hart, E., & Paechter, B. (2008). Computing the state of specknets: Further analysis of an innate immune-inspired model. In P. J. Bentley, D. Lee, & S. Jung (Eds.), Lecture notes in computer science : Vol. 5132. Artificial immune systems, 7th international conference, ICARIS 2008 (pp. 95–106). Berlin: Springer. CrossRefGoogle Scholar
  13. de Castro, L. N., & Timmis, J. (2002a). An artificial immune network for multimodal function optimization. In IEEE congress on evolutionary computation, 2002, CEC 2002 (pp. 699–704). Piscataway: IEEE Press. Google Scholar
  14. de Castro, L. N., & Timmis, J. (2002b). Artificial immune systems: A new computational intelligence approach. London: Springer. MATHGoogle Scholar
  15. de Castro, L. N., & Zuben, F. J. V. (2001). aiNet: An artificial immune network for data analysis. In H. A. Abbass, R. A. Sarker, & C. S. Newton (Eds.), Data mining: A heuristic approach (pp. 231–259). Hershey: Idea Group Publishing. Google Scholar
  16. de Lemos, R., Timmis, J., Forrest, S., & Ayara, M. (2007). Immune-inspired adaptable error detection for automated teller machines. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 37(5), 873–886. CrossRefGoogle Scholar
  17. Dembic, Z. (2004). Response to Cohn: The immune system rejects the harmful, protects the useful and neglects the rest of microorganisms. Scandinavian Journal of Immunology, 60, 3–5. CrossRefGoogle Scholar
  18. Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chretien, L. (1991). The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proceedings of the first international conference on simulation of adaptive behavior: From animals to animats (pp. 356–365). Cambridge: MIT Press. Google Scholar
  19. Dilger, W., & Strangfeld, S. (2006). Properties of the Bersini experiment on self-assertion. In Genetic and evolutionary computation conference, GECCO 2006, proceedings (pp. 95–102). New York: ACM. CrossRefGoogle Scholar
  20. Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462. CrossRefGoogle Scholar
  21. Edelman, G. M., & Gally, JA (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Science (PNAS), 98(24), 13,763–13,768. Google Scholar
  22. Egen, J. G., Rothfuchs, A. G., Feng, C. G., Winter, N., Sher, A., & Germain, R. N. (2008). Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity, 28, 271–284. CrossRefGoogle Scholar
  23. Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). The immune system, adaptation, and machine learning. Physica D, 22, 187–204. MathSciNetGoogle Scholar
  24. Forrest, S., & Beauchemin, C. (2007). Computer immunology. Immunological Reviews, 216(1), 176–197. Google Scholar
  25. Freitas, A., & Timmis, J. (2007). Revisiting the foundations of artificial immune systems for data mining. IEEE Transactions on Evolutionary Computing, 11(4), 521–540. CrossRefGoogle Scholar
  26. Garnier, S., Gautrais, J., & Theraulaz, G. (2007). The biological principles of swarm intelligence. Swarm Intelligence, 1(1), 3–31. CrossRefGoogle Scholar
  27. Garrett, S. (2005). How do we evaluate artificial immune systems? Evolutionary Computation, 13(2), 145–177. CrossRefGoogle Scholar
  28. Gazi, V., & Passino, K. M. (2003). Stability analysis of swarms. IEEE Transactions on Automatic Control, 48, 692–697. CrossRefMathSciNetGoogle Scholar
  29. Greensmith, J., Aickelin, U., & Tedesco, J. (2010). Information fusion for anomaly detection with the dendritic cell algorithm. Information Fusion, 11(1), 21–34. CrossRefGoogle Scholar
  30. Grosan, C., Abraham, A., & Chis, M. (2006). Swarm intelligence in data-mining. Studies in Computational Intelligence (SCI), 34, 1–20. CrossRefGoogle Scholar
  31. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tache, F., Durier, V., Said, I., Canonge, S., Ame, J., Detrain, C., Correll, N., Martinoli, A., Mondada, F., Siegwart, R., & Deneubourg, J. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318(5853), 1155–1158. CrossRefGoogle Scholar
  32. Handl, J., Knowles, J., & Dorigo, M. (2006). Ant-based clustering and topographical mapping. Artificial Life, 12, 36–61. CrossRefGoogle Scholar
  33. Hart, E. (2005). Not all balls are round: An investigation of alternative recognition-region shapes. In C. Jacob, M. L. Pilat, P. J. Bentley, & J. Timmis (Eds.), Lecture notes in computer science : Vol. 3627. Artificial immune systems, 4th international conference, ICARIS 2005 (pp. 29–42). Berlin: Springer. Google Scholar
  34. Hart, E., & Davoudani, D. (2009). Dendritic cell trafficking: From immunology to engineering. In P. S. Andrews, J. Timmis, N. Owens, U. Aickelin, E. Hart, A. Hone, & A. Tyrrell (Eds.), Lecture notes in computer science : Vol. 5666. Artificial immune systems, 8th international conference, ICARIS 2009 (pp. 11–13). Berlin: Springer. CrossRefGoogle Scholar
  35. Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. Applied Soft Computing, 8(1), 191–201. CrossRefGoogle Scholar
  36. Hart, E., Bersini, H., & Santos, F. (2007). How affinity influences tolerance in an idiotypic network. Journal of Theoretical Biology, 249(3), 422–436. CrossRefGoogle Scholar
  37. Hart, E., Bersini, H., & Santos, F. (2009). Structure vs function: A topological perspective on immune networks. Natural Computing. doi:10.1007/s11047-009-9138-8. Google Scholar
  38. Hoffmeyer, J. (1997). The swarming body. In Semiotics around the world, proceedings of the fifth congress of the international association for semiotic studies (pp. 937–940). Berkeley: Mouton de Gruyter. Google Scholar
  39. Humza, R., Scholz, O., Mokhtar, M., Timmis, J., & Tyrrell, A. (2009). Towards energy homeostasis in an autonomous self-reconfigurable modular robotic organism. In Comptation world 2009 (pp. 21–26). Piscataway: IEEE Press. Google Scholar
  40. Jacob, C., Steil, S., & Bergmann, K. P. (2006). The swarming body: Simulating the decentralized defenses of immunity. In H. Bersini & J. Carneiro (Eds.), Lecture notes in computer science : Vol. 4163. Artificial immune systems, 5th international conference, ICARIS 2006 (pp. 52–65). Berlin: Springer. CrossRefGoogle Scholar
  41. Janeway, C., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216. CrossRefGoogle Scholar
  42. Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunobiology (5th ed.). New York: Garland Publishing. Google Scholar
  43. Kennedy, J., & Eberhart, R. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann. Google Scholar
  44. Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In IEEE congress on evolutionary computation, 2002, CEC 2002 (pp. 1671–1676). Piscataway: IEEE Press. Google Scholar
  45. Kernbach, S., Scholz, O., Harada, K., Popesku, S., Leidke, J., Raja, H., Liu, W., Caparrelli, F., Jemai, J., Havlik, J., Meister, E., & Levi, P. (2010). Multi-robot organisms: State of the art. In K. Koy, R. Nagpal, & W. Shen (Eds.), IEEE international conference on robotics and automation (workshop on modular robotics) (pp. 1–10). Piscataway: IEEE Press. Google Scholar
  46. Kleinstein, P., & Seiden, S. H. (2000). Simulating the immune system. Computing in Science and Engineering, 2, 67–77. Google Scholar
  47. Kohler, B., Puzone, R., Seiden, P., & Celada, F. (2000). A systematic approach to vaccine complexity using an automaton model of the cellular and humoral immune system, I. Viral characteristics and polarized responses. Vaccine, 19(7–8), 862–876. CrossRefGoogle Scholar
  48. Langman, R. E., & Cohn, M. (1986). The ‘complete’ idiotype network is an absurd immune system. Immunology Today, 7(4), 100–101. CrossRefGoogle Scholar
  49. Levi, P., & Kernbach, S. (Eds.) (2010). Symbiotic multi-robot organisms: Reliability, adaptability and evolution. Berlin: Springer. MATHGoogle Scholar
  50. Lumer, E., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In Proceedings of the third international conference on simulation of adaptive behavior: From animals to animats 3 (pp. 501–508). Cambridge: MIT Press. Google Scholar
  51. McEwan, C., & Hart, E. (2009). Representation in the (artificial) immune system. Journal of Mathematical Modelling and Algorithms, 8, 125–149. MATHCrossRefMathSciNetGoogle Scholar
  52. Millonas, M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton (Ed.), Artificial life III (pp. 417–445). Redwood City: Addison-Wesley. Google Scholar
  53. Mokhtar, M., Timmis, J., Tyrrell, A., & Bi, R. (2009). A modified dendritic cell algorithm for on-line error detection in robotic system. In IEEE congress on evolutionary computation, 2009, CEC 2009 (pp. 2055–2062). Piscataway: IEEE Press. CrossRefGoogle Scholar
  54. Nanas, N., Uren, V., & de Roeck, A. (2004). Nootropia: A user profiling model based on a self-organising term network. In G. Nicosia, V. Cutello, P. J. Bentley, & J. Timmis (Eds.), Lecture notes in computer science : Vol. 3239. Artificial immune systems, third international conference, ICARIS 2004 (pp. 146–160). Berlin: Springer. CrossRefGoogle Scholar
  55. Newborough, R., & Stepney, S. (2005). A generic framework for population based algorithms. In H. Bersini & J. Carneiro (Eds.), Lecture notes in computer science : Vol. 4163. Artificial immune systems, 5th international conference, ICARIS 2006 (pp. 43–55). Berlin: Springer. CrossRefGoogle Scholar
  56. Orosz, M. (2001). An introduction to immuno-ecology and immuno-informatics. In L. A. Segal & I. R. Cohen (Eds.), Design principles from the immune system (pp. 125–150). New York: Oxford University Press. Google Scholar
  57. Owens, N., Timmis, J., Tyrrell, A., & Greensted, A. (2008). Modelling the tunability of early T-cell activation events. In P. J. Bentley, D. Lee, & S. Jung (Eds.), Lecture notes in computer science : Vol. 5132. Artificial immune systems, 7th international conference, ICARIS 2008. Berlin: Springer. CrossRefGoogle Scholar
  58. Owens, N., Greensted, A., Timmis, J., & Tyrrell, A. (2009). T cell receptor signalling inspired kernel density estimation and anomaly detection. In P. S. Andrews, J. Timmis, N. Owens, U. Aickelin, E. Hart, A. Hone, & A. Tyrrell (Eds.), Lecture notes in computer science : Vol. 5666. Artificial immune systems, 8th international conference, ICARIS 2009 (pp. 122–155). Berlin: Springer. CrossRefGoogle Scholar
  59. Perelson, A. S., & Oster, G. F. (1979). Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self–non-self discrimination. Journal of Theoretical Biology, 81(4), 645–670. CrossRefMathSciNetGoogle Scholar
  60. Read, M., Timmis, J., Andrews, P. S., & Kumar, V. (2009). A domain model of experimental autoimmune encephalomyelitis. In CoSMoS 2009, proceedings of the 2009 international workshop on complex systems modelling and simulation (pp. 3–39). Frome: Luniver Press. Google Scholar
  61. Salazar-Bañuelos, A. (2009). Non-deterministic explanation of immune responses: A computer model. In P. S. Andrews, J. Timmis, N. Owens, U. Aickelin, E. Hart, A. Hone, & A. Tyrrell (Eds.), Lecture notes in computer science : Vol. 5666. Artificial immune systems, 8th international conference, ICARIS 2009 (pp. 7–10). Berlin: Springer. CrossRefGoogle Scholar
  62. Segal, L., & Cohen, I. (Eds.) (2001). Design principles for the immune system and other distributed systems. New York: Oxford University Press. Google Scholar
  63. Sempo, G., Depickere, S., Ame, J. M., Detrain, C., Halloy, J., & Deneubourg, J. (2006). Integration of an autonomous artificial agent in an insect society: Experimental validation. In Lecture notes in artificial intelligence : Vol. 4095. From animats to animals 9, the ninth international conference on the simulation of adaptive behavior, SAB 2006 (pp. 703–712). Berlin: Springer. Google Scholar
  64. Stepney, S., Smith, R., Timmis, J., Tyrrell, A., Neal, M., & Hone, A. (2006). Conceptual frameworks for artificial immune systems. International Journal of Unconventional Computing, 1(3), 315–338. Google Scholar
  65. Stibor, T., Timmis, J., & Eckert, C. (2006). On the use of hyperspheres in artificial immune systems as antibody recognition regions. In Lecture notes in computer science : Vol. 4163. Proceedings of 5th international conference on artificial immune systems (ICARIS) (pp. 215–228). Berlin: Springer. Google Scholar
  66. SwarmWiki (ongoing). Swarm wiki. http://swarm.org.
  67. Timmis, J. (2007). Artificial immune systems: Today and tomorow. Natural Computing, 6(1), 1–18. MATHCrossRefMathSciNetGoogle Scholar
  68. Timmis, J., & Neal, M. (2001). A resource limited artificial immune system for data analysis. Knowledge Based Systems, 14(3–4), 121–130. CrossRefGoogle Scholar
  69. Timmis, J., Andrews, P. S., Owens, N., & Clark, E. (2008a). An interdisciplinary perspective on artificial immune systems. Evolutionary Intelligence, 1(1), 5–26. CrossRefGoogle Scholar
  70. Timmis, J., Hart, E., Hone, A., Neal, M., Robins, A., Stepney, S., & Tyrrell, A. (2008b). Immuno-engineering. In IFIP international federation for information processing : Vol. 268. 2nd IFIP international conference on biologically inspired collaborative computing, 20th IFIP world computer congress (pp. 3–17). Berlin: Springer. Google Scholar
  71. Timmis, J., Hone, A., Stibor, T., & Clark, E. (2008c). Theoretical advances in artificial immune systems. Journal of Theoretical Computer Science, 403(1), 11–32. MATHCrossRefMathSciNetGoogle Scholar
  72. Timmis, J., Tyrrell, A., Mokhtar, M., Ismail, A., Owens, N., & Bi, R. (2010). An artificial immune system for robot organisms. In P. Levi & S. Kernbach (Eds.), Symbiotic multi-robot organisms: Reliability, adaptability and evolution (pp. 268–288). Berlin: Springer. Google Scholar
  73. Warrender, C. (2004). Modeling intercellular interactions in the peripheral immune system. PhD thesis, Computer Science Department, University of New Mexico, NM. Google Scholar
  74. Warrender, C., Forrest, S., & Segel, L. (2004). Homeostasis of peripheral immune effectors. Bulletin of Mathematical Biology, 66, 1493–1514. CrossRefGoogle Scholar
  75. Winfield, A. F., Harper, C. J., & Nembrini, J. (2006). Towards the application of swarm intelligence in safety critical systems. In Proceeding of the 1st IET international conference on system safety (pp. 89–95). Hertfordshire: IEE/IET, Stevenage. CrossRefGoogle Scholar
  76. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computing, 4, 67–82. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer Science and Department of ElectronicsUniversity of YorkHelsingtonUK
  2. 2.Department of Computer ScienceUniversity of YorkHelsingtonUK
  3. 3.School of ComputingEdinburgh Napier UniversityEdinburghUK

Personalised recommendations