Swarm Intelligence

, Volume 4, Issue 2, pp 117–143 | Cite as

Energy-efficient indoor search by swarms of simulated flying robots without global information

  • Timothy Stirling
  • Steffen Wischmann
  • Dario Floreano
Article

Abstract

Swarms of flying robots are a promising alternative to ground-based robots for search in indoor environments with advantages such as increased speed and the ability to fly above obstacles. However, there are numerous problems that must be surmounted including limitations in available sensory and on-board processing capabilities, and low flight endurance. This paper introduces a novel strategy to coordinate a swarm of flying robots for indoor exploration that significantly increases energy efficiency. The presented algorithm is fully distributed and scalable. It relies solely on local sensing and low-bandwidth communication, and does not require absolute positioning, localisation, or explicit world-models. It assumes that flying robots can temporarily attach to the ceiling, or land on the ground for efficient surveillance over extended periods of time. To further reduce energy consumption, the swarm is incrementally deployed by launching one robot at a time. Extensive simulation experiments demonstrate that increasing the time between consecutive robot launches significantly lowers energy consumption by reducing total swarm flight time, while also decreasing collision probability. As a trade-off, however, the search time increases with increased inter-launch periods. These effects are stronger in more complex environments. The proposed localisation-free strategy provides an energy efficient search behaviour adaptable to different environments or timing constraints.

Keywords

Flying robots Swarm search Localisation-free search Energy-efficiency Mobile robot sensor network deployment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadzadeh, A., Buchman, G., Cheng, P., Jadbabaie, A., Keller, J., Kumar, V., & Pappas, G. (2006). Cooperative control of UAVs for search and coverage. In Proceedings of the conference on unmanned systems, AUVSI, Arlington (pp. 1–14). Google Scholar
  2. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., & Zdravkovic, V. (2008). Empirical investigation of starling flocks: A benchmark study in collective animal behaviour. Animal Behaviour, 76(1), 201–215. CrossRefGoogle Scholar
  3. Batalin, M., & Sukhatme, G. (2002). Spreading out: A local approach to multi-robot coverage. In Proceedings of the international symposium on distributed autonomous robotic systems (pp. 373–382). Berlin: Springer. Google Scholar
  4. Batalin, M., & Sukhatme, G. (2004). Coverage, exploration and deployment by a mobile robot and communication network. Telecommunication Systems, 26(2–4), 181–196. CrossRefGoogle Scholar
  5. Batalin, M., Sukhatme, G., & Hattig, M. (2004). Mobile robot navigation using a sensor network. In Proceedings of the international conference robotics and automation (Vol. 1, pp. 636–641). Piscataway: IEEE Press. Google Scholar
  6. Baxter, J. L., Burke, E. K., Garibaldi, J. M., & Norman, M. (2007). Multi-robot search and rescue: A potential field based approach. In Mukhopadhyay, S., & Gupta, G. (Eds.), Autonomous robots and agents (pp. 9–16). Berlin: Springer. CrossRefGoogle Scholar
  7. Bisson, J., Michaud, F., & Letourneau, D. (2003). Relative positioning of mobile robots using ultrasounds. In Proceedings of the international conference on intelligent robots and systems, IROS ’03 (pp. 1783–1788). Piscataway: IEEE Press. Google Scholar
  8. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press. MATHGoogle Scholar
  9. Bryson, M., & Sukkarieh, S. (2007). Co-operative localisation and mapping for multiple UAVs in unknown environments. In Proceedings of the aerospace conference (pp. 1–12). Piscataway: IEEE Press. Google Scholar
  10. Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3), 376–386. CrossRefGoogle Scholar
  11. Corke, P., Peterson, R., & Rus, D. (2005). Localization and navigation assisted by networked cooperating sensors and robots. The International Journal of Robotics Research, 24(9), 771–786. CrossRefGoogle Scholar
  12. Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms. Cambridge: MIT Press. MATHGoogle Scholar
  13. Desbiens, A. L., Asbeck, A. T., & Cutkosky, M. R. (2009). Scansorial landing and perching. In Proceedings of the 14th international symposium on robotics research (pp. 1–14). Berlin: Springer. Google Scholar
  14. Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271. MATHCrossRefMathSciNetGoogle Scholar
  15. Dorigo, M., & Birattari, M. (2007). Swarm intelligence. Scholarpedia, 2(9), 1462. CrossRefGoogle Scholar
  16. Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping (SLAM): part I. IEEE Robotics & Automation Magazine, 13(2), 99–110. CrossRefGoogle Scholar
  17. Filliat, D., & Meyer, J. (2003). Map-based navigation in mobile robots: I. A review of localization strategies. Cognitive Systems Research, 4(4), 243–282. CrossRefGoogle Scholar
  18. Flint, M., Polycarpou, M., & Fernandez-Gaucherand, E. (2002). Cooperative control for multiple autonomous UAV’s searching for targets. In Proceedings of the 41st conference on decision and control (Vol. 3, pp. 2823–2828). Piscataway: IEEE Press. CrossRefGoogle Scholar
  19. Fowers, S. G., Lee, D. J., Tippetts, B. J., Lillywhite, K. D., Dennis, A. W., & Archibald, J. K. (2007). Vision aided stabilization and the development of a quad-rotor micro UAV. In Proceedings of the international symposium on computational intelligence in robotics and automation (pp. 143–148). Piscataway: IEEE Press. CrossRefGoogle Scholar
  20. Gage, D. (1992). Command control for many-robot systems. Unmanned System Magazine, 10(4), 28–34. Google Scholar
  21. Grzonka, S., Grisetti, G., & Burgard, W. (2009). Towards a navigation system for autonomous indoor flying. In Proceedings of the international conference on robotics and automation (pp. 2878–2883). Piscataway: IEEE. Google Scholar
  22. Gurdan, D., Stumpf, J., Achtelik, M., Doth, K. M., Hirzinger, G., & Rus, D. (2007). Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz. In Proceedings of the international conference on robotics and automation, ICRA ’07 (pp. 361–366). Piscataway: IEEE Press. CrossRefGoogle Scholar
  23. Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man and Cybernetics, Part A, 35(1), 78–92. CrossRefGoogle Scholar
  24. Hoffmann, G., Rajnarayan, D., Waslander, S., Dostal D, Jang J., & Tomlin, C. (2004). The stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In Proceedings of the 23rd digital avionics systems conference, DASC ’04 (Vol. 2, pp. 1–10). Piscataway: IEEE Press. Google Scholar
  25. Hoffmann, G., Huang, H., Waslander, S., & Tomlin, C. (2007). Quadrotor helicopter flight dynamics and control: Theory and experiment. In Proceedings of the guidance, navigation, and control conference (pp. 1–20). Reston: AIAA. Google Scholar
  26. Howard, A., Mataric, M. J., & Sukhatme, G. S. (2002a). An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126. MATHCrossRefGoogle Scholar
  27. Howard, A., Mataric, M. J., & Sukhatme, G. S. (2002b). Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Proceedings of the 6th distributed autonomous robotic systems (Vol. 5, pp. 299–308). Berlin: Springer. Google Scholar
  28. Iida, F. (2003). Biologically inspired visual odometer for navigation of a flying robot. Robotics and Autonomous Systems, 44, 201–208. CrossRefGoogle Scholar
  29. Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the international conference on robotics and automation (Vol. 2, pp. 500–505). Piscataway: IEEE Press. Google Scholar
  30. Li, Q., Rosa, M. D., & Rus, D. (2003). Distributed algorithms for guiding navigation across a sensor network. In Proceedings of the 9th annual international conference on Mobile computing and networking, MobiCom ’03 (pp. 313–325). New York: ACM. CrossRefGoogle Scholar
  31. Liu, B., Brass, P., Dousse, O., Nain, P., & Towsley, D. (2005). Mobility improves coverage of sensor networks. In Proceedings of the 6th international symposium on Mobile ad hoc networking and computing (pp. 300–308). New York: ACM. CrossRefGoogle Scholar
  32. Mamei, M., & Zambonelli, F. (2005). Physical deployment of digital pheromones through RFID technology. In Proceedings of the swarm intelligence symposium, SIS ’05 (pp. 281–288). Piscataway: IEEE Press. CrossRefGoogle Scholar
  33. McLurkin, J., & Smith, J. (2007). Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In Alami, R., Chatila, R., & Asama, H. (Eds.), Distributed autonomous robotic systems 6 (pp. 399–408). Berlin: Springer. CrossRefGoogle Scholar
  34. Mei, Y., Lu, Y. H., Hu, Y. C., & Lee, C. S. G. (2005). A case study of mobile robot’s energy consumption and conservation techniques. In Proceedings of the 12th international conference on advanced robotics, ICAR ’05 (pp. 492–497). Piscataway: IEEE Press. Google Scholar
  35. Melhuish, C., & Welsby, J. (2002). Gradient ascent with a group of minimalist real robots: Implementing secondary swarming. In Proceedings of the international conference on systems, man and cybernetics (pp. 509–514). Piscataway: IEEE Press. Google Scholar
  36. Meyer, J.A., & Filliat, D. (2003). Map-based navigation in mobile robots: II. A review of map-learning and path-planning strategies. Cognitive Systems Research, 4(4), 283–317. CrossRefGoogle Scholar
  37. Nakamura, T., Ohara, M., Ogasawara, T., & Ishiguro, H. (2003). Fast self-localization method for mobile robots using multiple omnidirectional vision sensors. Machine Vision Applications, 14(2), 129–138. Google Scholar
  38. Nardi, R. D., Holland, O., Woods, J., & Clark, A. (2006). SwarMAV: A swarm of miniature aerial vehicles. In Proceedings of the 21st international UAV systems conference. Google Scholar
  39. Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm. Swarm Intelligence, 2(1), 1–23. CrossRefGoogle Scholar
  40. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. Transactions on Evolutionary Computation, 13(4), 695–711. CrossRefGoogle Scholar
  41. Oh, P. Y., Joyce, M., & Gallagher, J. (2005). Designing an aerial robot for hover-and-stare surveillance. In Proceedings of the 12th international conference on advanced robotics (pp. 303–308). Piscataway: IEEE Press. CrossRefGoogle Scholar
  42. O’Hara, K. J., & Balch, T. R. (2004). Distributed path planning for robots in dynamic environments using a pervasive embedded network. In Proceedings of the 3rd international conference on autonomous agents and multi-agent systems (Vol. 3, pp. 1538–1539). Piscataway: IEEE Press. Google Scholar
  43. Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324. MATHCrossRefGoogle Scholar
  44. Payton, D., Estkowski, R., & Howard, M. (2004). Pheromone robotics and the logic of virtual pheromones. In Şahin, E., & Spears, W. (Eds.), LNCS : Vol. 3342. Swarm robotics: SAB 2004 international workshop (pp. 45–57). Berlin: Springer. Google Scholar
  45. Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the 2nd workshop on mobile computing systems and applications, WMCSA ’99 (pp. 90–100). Piscataway: IEEE Press. CrossRefGoogle Scholar
  46. Pezeshkian, N., Nguyen, H., & Burmeister, A. (2007). Unmanned ground vehicle radio relay deployment system for non-line-of-sight operations. In 13th IASTED international conference on robotics and applications. Calgary: ACTA Press. Google Scholar
  47. Poduri, S., & Sukhatme, G. S. (2004). Constrained coverage for mobile sensor networks. In Proceedings of the international conference on robotics and automation (pp. 165–171). Piscataway: IEEE Press. Google Scholar
  48. Pugh, J., Raemy, X., Favre, C., Falconi, R., & Martinoli, A. (2009). A fast on-board relative positioning module for multi-robot systems. IEEE Transactions on Mechatronics, Focused Section on Mechatronics in Multi-Robot Systems, 14(2), 151–162. Google Scholar
  49. Reif, J., & Wang, H. (1999). Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems, 27(3), 171–194. CrossRefGoogle Scholar
  50. Roberts, J., Stirling, T., Zufferey, J. C., & Floreano, D. (2007). Quadrotor using minimal sensing for autonomous indoor flight. In European micro air vehicle conference and flight competition, EMAV ’07. Google Scholar
  51. Roberts, J., Zufferey, J. C., & Floreano, D. (2008). Energy management for indoor hovering robots. In Proceedings of the international conference on intelligent robots and systems (pp. 1242–1247). Piscataway: IEEE Press. Google Scholar
  52. Roberts, J., Stirling, T., Zufferey, J. C., & Floreano, D. (2009). 2.5D infrared range and bearing system for collective robotics. In Proceedings of the international conference on intelligent robots and systems, IROS ’09 (pp. 3659–3664). Piscataway: IEEE Press. CrossRefGoogle Scholar
  53. Rudol, P., Wzorek, M., Conte, G., & Doherty, P. (2008). Micro unmanned aerial vehicle visual servoing for cooperative indoor exploration. In Proceedings of the aerospace conference (pp. 1–10). Piscataway: IEEE Press. Google Scholar
  54. Sharma, R., & Ghose, D. (2007). Swarm intelligence based collision avoidance between realistically modelled UAV clusters. In Proceedings of the American control conference (pp. 3892–3897). Piscataway: IEEE Press. CrossRefGoogle Scholar
  55. Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robots. Cambridge: MIT Press. Google Scholar
  56. Stipes, J., Hawthorne, R., Scheidt, D., & Pacifico, D. (2006). Cooperative localization and mapping. In Proceedings of the 2006 international conference on networking, sensing and control (pp. 596–601). Piscataway: IEEE Press. CrossRefGoogle Scholar
  57. Unver, O., Uneri, A., Aydemir, A., & Sitti, M. (2006). Geckobot: A gecko inspired climbing robot using elastomer adhesives. In Proceedings of the international conference on robotics and automation, ICRA ’06 (pp. 2329–2335). Piscataway: IEEE Press. CrossRefGoogle Scholar
  58. Valenti, M., Bethke, B., How, J. P., Farias, D. P., & Vian, J. (2007). Embedding health management into mission tasking for UAV teams. In American control conference (pp. 5777–5783). Piscataway: IEEE Press. CrossRefGoogle Scholar
  59. Wang, G., Cao, G., Porta, T. L., & Zhang, W. (2005). Sensor relocation in mobile sensor networks. In Proceedings of the 24th annual joint conference of the IEEE computer and communications societies, INFOCOM ’05 (pp. 2302–2312). Piscataway: IEEE Press. CrossRefGoogle Scholar
  60. York, G. W., & Pack, D. J. (2008). Cooperative persistent surveillance search algorithms using multiple unmanned aerial vehicles. In Grundel, D., Murphey, R., Pardalos, P., & Prokopyev, O. (Eds.), Cooperative networks: control and optimization (pp. 279–290). Cheltenham: Edward Elgar. Google Scholar
  61. Zavlanos, M. M., & Pappas, G. J. (2007). Potential fields for maintaining connectivity of mobile networks. IEEE Transactions on Robotics, 23(4), 812–816. CrossRefGoogle Scholar
  62. Zeimpekis, V., Giaglis, G. M., & Lekakos, G. (2003). A taxonomy of indoor and outdoor positioning techniques for mobile location services. SIGecom Exchange, 3(4), 19–27. CrossRefGoogle Scholar
  63. Ziparo, V. A., Kleiner, A., Nebel, B., & Nardi, D. (2007). RFID-based exploration for large robot teams. In Proceedings of the international conference on robotics and automation, ICRA ’07 (pp. 4606–4613). Piscataway: IEEE Press. CrossRefGoogle Scholar
  64. Zou, Y., & Chakrabarty, K. (2003). Sensor deployment and target localization based on virtual forces. In Proceedings of the 22nd annual joint conference of the IEEE computer and communications societies, INFOCOM ’03 (Vol. 2, pp. 1293–1303). Piscataway: IEEE Press. Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2010

Authors and Affiliations

  • Timothy Stirling
    • 1
  • Steffen Wischmann
    • 1
  • Dario Floreano
    • 1
  1. 1.Laboratory of Intelligent Systems (LIS)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations