Advertisement

Swarm Intelligence

, 4:37 | Cite as

Flocking for multi-robot systems via the Null-Space-based Behavioral control

  • Gianluca AntonelliEmail author
  • Filippo Arrichiello
  • Stefano Chiaverini
Article

Abstract

Flocking is the way in which populations of animals like birds, fishes, and insects move together. In such cases, the global behavior of the team emerges as a consequence of local interactions among the neighboring members. This paper approaches the problem of letting a group of robots flock by resorting to a behavior-based control architecture, namely Null-Space-based Behavioral (NSB) control. Following such a control architecture, very simple behaviors for each robot are defined and properly arranged in priority in order to achieve the assigned mission. In particular, flocking is performed in a decentralized manner, that is, the behaviors of each robot only depend on local information concerning the robot’s neighbors. In this paper, the flocking behavior is analyzed in a variety of conditions: with or without a moving rendez-vous point, in a two- or three-dimensional space and in presence of obstacles. Extensive simulations and experiments performed with a team of differential-drive mobile robots show the effectiveness of the proposed algorithm.

Keywords

Flocking Multiple mobile robots Behavioral control 

Supplementary material

11721_2009_36_MOESM1_ESM.mpg (3.2 mb)
Below is the link to the electronic supplementary material. (MPG 3.15 MB)
11721_2009_36_MOESM2_ESM.mpg (14.2 mb)
Below is the link to the electronic supplementary material. (MPG 14.1 MB)
11721_2009_36_MOESM3_ESM.gif (1.6 mb)
Below is the link to the electronic supplementary material. (GIF 1.60 MB)

Below is the link to the electronic supplementary material. (MPG 3.59 MB)

Below is the link to the electronic supplementary material. (MPG 2.08 MB)

Below is the link to the electronic supplementary material. (MPG 2.08 MB)

Below is the link to the electronic supplementary material. (MPG 3.59 MB)

References

  1. Antonelli, G., Arrichiello, F., Chakraborti, S., & Chiaverini, S. (2007). Experiences of formation control of multi-robot systems with the Null-Space-based Behavioral control. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 1068–1073). New York: IEEE Press. CrossRefGoogle Scholar
  2. Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008a). The null-space-based behavioral control for autonomous robotic systems. Journal of Intelligent Service Robotics, 1(1), 27–39. CrossRefGoogle Scholar
  3. Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008b). Stability analysis for the null-space-based behavioral control for multi-robot systems. In Proceedings 47th IEEE conference on decision and control and 8th European control conference (pp. 2463–2468). New York: IEEE Press. CrossRefGoogle Scholar
  4. Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008c). The entrapment/escorting mission: an experimental study using a multirobot system. IEEE Robotics and Automation Magazine (RAM). Special Issues on Design, Control, and Applications of Real-World Multi-Robot Systems, 15(1), 22–29. Google Scholar
  5. Antonelli, G., & Chiaverini, S. (2003). Kinematic control of a platoon of autonomous vehicles. In Proceedings 2003 IEEE international conference on robotics and automation (pp. 1464–1469). New York: IEEE Press. Google Scholar
  6. Antonelli, G., & Chiaverini, S. (2006). Kinematic control of platoons of autonomous vehicles. IEEE Transactions on Robotics, 22(6), 1285–1292. CrossRefGoogle Scholar
  7. Arkin, R. C. (1989). Motor schema based mobile robot navigation. The International Journal of Robotics Research, 8(4), 92–112. CrossRefGoogle Scholar
  8. Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT Press. Google Scholar
  9. Balch, T. (2000). Hierarchic social entropy: an information theoretic, measure of robot group, diversity. Autonomous Robots, 8(3), 209–238. CrossRefGoogle Scholar
  10. Bishop, B. E. (2003). On the use of redundant manipulator techniques for control of platoons of cooperating robotic vehicles. IEEE Transactions on Systems, Man and Cybernetics, 33(5), 608–615. CrossRefGoogle Scholar
  11. Bishop, B. E., & Stilwell, D. J. (2001). On the application of redundant manipulator techniques to the control of platoons of autonomous vehicles. In Proceedings 2001 IEEE international conference on control applications (pp. 823–828). New York: IEEE Press. Google Scholar
  12. Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23. Google Scholar
  13. Cao, Y., Fukunaga, A. S., & Kanhg, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4(1), 7–27. CrossRefGoogle Scholar
  14. Chiaverini, S. (1997). Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3), 398–410. CrossRefGoogle Scholar
  15. Cortes, J., Martinez, S., & Bullo, F. (2006). Robust rendez-vous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Transactions on Automatic Control, 51(8), 1289–1298. CrossRefMathSciNetGoogle Scholar
  16. Gu, D., & Hu, H. (2008). Using fuzzy logic to design separation function in flocking algorithms. IEEE Transactions on Fuzzy Systems, 16(4), 826–838. CrossRefMathSciNetGoogle Scholar
  17. Hsieh, M. A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic swarms. Robotica, 26(05), 691–701. CrossRefGoogle Scholar
  18. Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001. CrossRefMathSciNetGoogle Scholar
  19. Ji, M., & Egerstedt, M. (2007). Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics, 23(4), 693–703. CrossRefGoogle Scholar
  20. Maciejewski, A. A. (1988). Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. Journal of Robotic Systems, 5(6), 527–552. CrossRefGoogle Scholar
  21. Mansard, N., & Chaumette, F. (2007). Task sequencing for high-level sensor-based control. IEEE Transactions on Robotics and Automation, 23(1), 60–72. Google Scholar
  22. Martinez, S., Cortes, J., & Bullo, F. (2007). Motion coordination with distributed information. IEEE Control Systems Magazine, 27(4), 75–88. CrossRefGoogle Scholar
  23. Matarić, M. J. (1995). Issues and approaches in the design of collective autonomous agents. Robotics and Autonomous Systems, 16(2), 321–331. CrossRefGoogle Scholar
  24. Moshtagh, N., & Jadbabaie, A. (2007). Distributed geodesic control laws for flocking of nonholonomic agents. IEEE Transactions on Automatic Control, 52(4), 681–686. CrossRefMathSciNetGoogle Scholar
  25. Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal Robotics Research, 6(2), 3–15. CrossRefGoogle Scholar
  26. Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420. CrossRefMathSciNetGoogle Scholar
  27. Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233. CrossRefGoogle Scholar
  28. Oriolo, G., De Luca, A., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835–852. CrossRefGoogle Scholar
  29. Ren, W., & Beard, R. W. (2008). Communications and control engineering. Distributed consensus in multi-vehicle cooperative control. Berlin: Springer. zbMATHGoogle Scholar
  30. Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehicle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82. CrossRefGoogle Scholar
  31. Reynolds, C. (1987). Flocks, herd and schools: a distributed behavioral model. Computer Graphics, 21(4), 25–34. CrossRefMathSciNetGoogle Scholar
  32. Siciliano, B. (1990). Kinematic control of redundant robot manipulators: a tutorial. Journal of Intelligent Robotic Systems, 3(3), 201–212. CrossRefGoogle Scholar
  33. Tanner, H., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 52(5), 863–868. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Gianluca Antonelli
    • 1
    Email author
  • Filippo Arrichiello
    • 1
  • Stefano Chiaverini
    • 1
  1. 1.Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell’Informazione e Matematica IndustrialeUniversità degli Studi di CassinoCassinoItaly

Personalised recommendations