Advertisement

Swarm Intelligence

, 3:303 | Cite as

Application of particle swarm optimization and proximal support vector machines for fault detection

  • B. SamantaEmail author
  • C. Nataraj
Article

Abstract

This paper presents a novel application of particle swarm optimization (PSO) in combination with another computational intelligence (CI) technique, namely, proximal support vector machine (PSVM) for machinery fault detection. Both real-valued and binary PSO algorithms have been considered along with linear and nonlinear versions of PSVM. The time domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The features extracted from original and preprocessed signals are used as inputs to the classifiers (PSVM) for detection of machine condition. Input features are selected using a PSO algorithm. The classifiers are trained with a subset of experimental data for known machine conditions and are tested using the remaining data. The procedure is illustrated using the experimental vibration data of a rotating machine. The influences of the number of features, PSO algorithms and type of classifiers (linear or nonlinear PSVM) on the detection success are investigated. Results are compared with a genetic algorithm (GA) and principal component analysis (PCA). The PSO based approach gave test classification success above 90% which were comparable with the GA and much better than PCA. The results show the effectiveness of the selected features and classifiers in detection of machine condition.

Keywords

Computational intelligence Feature selection Machinery condition monitoring Machine learning Support vector machine Swarm intelligence 

References

  1. Clerc, M., & Kennedy, J. (2002). The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73. CrossRefGoogle Scholar
  2. Eberhart, R., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 IEEE congress on evolutionary computation (pp. 84–88). New York: IEEE Press. Google Scholar
  3. Eberhart, R., & Shi, Y. (2001). Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the 2001 IEEE congress on evolutionary computation (pp. 94–100). New York: IEEE Press. CrossRefGoogle Scholar
  4. Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. New York: Wiley. Google Scholar
  5. Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machine classifiers. In Proceedings of knowledge discovery and data mining (pp. 77–86). New York: ACM. Google Scholar
  6. Fung, G., & Mangasarian, O. L. (2005). Multicategory proximal support vector machine classifiers. Machine Learning, 59, 77–97. zbMATHCrossRefGoogle Scholar
  7. Jack, L. B., & Nandi, A. K. (2002). Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing, 16, 373–390. CrossRefGoogle Scholar
  8. Joachims, T. (1999). Making large-scale SVM learning practical. In B. Scholkopf, C.J. Burges, A. Simola (Eds.) Advances in kernel methods—support vector learning (pp. 169–184). Cambridge: MIT Press. Google Scholar
  9. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). New York: Springer. zbMATHGoogle Scholar
  10. Kennedy, J. (1999). Small worlds and mega-minds: effects of neighborhood topology on particle swam performance. In Proceedings of the 1999 IEEE congress on evolutionary computation (pp. 1931–1938). New York: IEEE Press. Google Scholar
  11. Kennedy, J. (2003). Bare bones particle swarms. In Proceedings of the 2003 IEEE swarm intelligence symposium (pp. 80–87). New York: IEEE Press. Google Scholar
  12. Kennedy, J. (2007). Some issues and practices for particle swarms. In Proceedings of the 2007 IEEE swarm intelligence symposium (pp. 162–169). New York: IEEE Press. CrossRefGoogle Scholar
  13. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks (pp. 1942–1948). New York: IEEE Press. CrossRefGoogle Scholar
  14. Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE international conference on systems, man and cybernetics (pp. 4104–4109). New York: IEEE Press. Google Scholar
  15. Kennedy, J., Mendes, R. (1999). Population structure and particle swam performance. In Proceedings of the 2002 IEEE congress on evolutionary computation (pp. 1671–1676). New York: IEEE Press. Google Scholar
  16. Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. San Francisco: Kaufmann. Google Scholar
  17. Li, X., & Engelbrecht, A. P. (2007). Particle swarm optimization—An introduction and its recent developments. In Proceedings of genetic and evolutionary computation conference (pp. 3391–3414). New York: ACM. CrossRefGoogle Scholar
  18. Li, Y., Tong, Y., Bai, B., & Zhang, Y. (2007). An improved particle swarm optimization for SVM training. In Proceedings of the third international conference on natural computation (pp. 611–615). Los Alamitos: IEEE Computer Society. CrossRefGoogle Scholar
  19. Mangasarian, O. L., & Wild, E. W. (2006). Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 69–74. CrossRefGoogle Scholar
  20. Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8, 204–210. CrossRefGoogle Scholar
  21. Paquet, U., & Engelbrecht, A. P. (2003). Training support vector machines with particle swarm. In Proceedings of international joint conference on neural networks (pp. 1593–1598). New York: IEEE Press. Google Scholar
  22. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization—An overview. Swarm Intelligence, 1, 33–57. CrossRefGoogle Scholar
  23. Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimization. Journal of Artificial Evolution and Applications. doi: 101135/2008/685175. zbMATHGoogle Scholar
  24. Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8, 240–255. CrossRefGoogle Scholar
  25. Samanta, B. (2004a). Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing, 18, 625–644. CrossRefGoogle Scholar
  26. Samanta, B. (2004b). Artificial neural networks and genetic algorithms for gear fault detection. Mechanical Systems and Signal Processing, 18, 1273–1282. CrossRefGoogle Scholar
  27. Samanta, B., & Al-Balushi, K. R. (2003). Artificial neural network based fault diagnostics of rolling element bearings using time domain features. Mechanical Systems and Signal Processing, 17, 317–328. CrossRefGoogle Scholar
  28. Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2003). Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 16, 657–665. CrossRefGoogle Scholar
  29. Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2006). Artificial neural networks and genetic algorithm for bearing fault detection. Journal of Soft Computing, 10, 264–271. CrossRefGoogle Scholar
  30. Scholkopf, B. (1998). SVMs—a practical consequence of learning theory. IEEE Intelligent Systems, 13, 18–21. Google Scholar
  31. Shi, Y., & Eberhart, R. C. (1998). A modified particle swarm optimizer. In Proceedings of the 1998 IEEE international conference on evolutionary computation (pp. 69–73). New York: IEEE Press. Google Scholar
  32. Shi, Y., & Eberhart, R. (2001). Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 IEEE congress on evolutionary computation (pp. 101–106). New York: IEEE Press. CrossRefGoogle Scholar
  33. Trelea, I. L. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85, 317–325. zbMATHCrossRefMathSciNetGoogle Scholar
  34. Van den Bergh, F. (2002). Analysis of particle swarm optimization. Ph.D. thesis, University of Pretoria, South Africa. Google Scholar
  35. Van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176, 937–971. zbMATHCrossRefMathSciNetGoogle Scholar
  36. Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999. CrossRefGoogle Scholar
  37. Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.). New York: Springer. zbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVillanova UniversityVillanovaUSA

Personalised recommendations