Advertisement

Swarm Intelligence

, Volume 3, Issue 1, pp 35–68 | Cite as

Analysis of different MMAS ACO algorithms on unimodal functions and plateaus

  • Frank Neumann
  • Dirk Sudholt
  • Carsten Witt
Open Access
Article

Abstract

Recently, the first rigorous runtime analyses of ACO algorithms appeared, covering variants of the MAX–MIN ant system and their runtime on pseudo-Boolean functions. Interestingly, a variant called 1-ANT is very sensitive to the evaporation factor while Gutjahr and Sebastiani proved partly opposite results for their variant MMASbs. These algorithms differ in their pheromone update mechanisms and, moreover, 1-ANT accepts equally fit solutions in contrast to MMASbs.

By analyzing variants of MMASbs, we prove that the different behavior of 1-ANT and MMASbs results from the different pheromone update mechanisms. Building upon results by Gutjahr and Sebastiani, we extend their analyses of MMASbs to the class of unimodal functions and show improved results for test functions using new and specialized techniques; in particular, we present new lower bounds. Finally, we compare MMASbs with a variant that also accepts equally fit solutions as this enables the exploration of plateaus. For well-known plateau functions we prove that this drastically reduces the optimization time. Our findings are complemented by experiments that support our asymptotic analyses and yield additional insights.

Keywords

Ant colony optimization MMAS Runtime analysis Theory 

References

  1. Brémaud, P. (1998). Markov chains: Gibbs fields, Monte Carlo simulation, and queues. New York: Springer. Google Scholar
  2. Doerr, B., & Johannsen, D. (2007). Refined runtime analysis of a basic ant colony optimization algorithm. In Proceedings of the congress on evolutionary computation (CEC ’07) (pp. 501–507). New York: IEEE Press. CrossRefGoogle Scholar
  3. Doerr, B., Hebbinghaus, N., & Neumann, F. (2006). Speeding up evolutionary algorithms through restricted mutation operators. In LNCS : Vol. 4193. Parallel problem solving from nature (PPSN ’06) (pp. 978–987). Berlin: Springer. CrossRefGoogle Scholar
  4. Doerr, B., Neumann, F., Sudholt, D., & Witt, C. (2007). On the runtime analysis of the 1-ANT ACO algorithm. In Proceedings of the genetic and evolutionary computation conference (GECCO ’07) (pp. 33–40). New York: ACM. CrossRefGoogle Scholar
  5. Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344, 243–278. zbMATHCrossRefMathSciNetGoogle Scholar
  6. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. zbMATHGoogle Scholar
  7. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1), 29–41. CrossRefGoogle Scholar
  8. Droste, S., Jansen, T., & Wegener, I. (2002). On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science, 276, 51–81. zbMATHCrossRefMathSciNetGoogle Scholar
  9. Droste, S., Jansen, T., & Wegener, I. (2006). Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Computing Systems, 39(4), 525–544. zbMATHCrossRefMathSciNetGoogle Scholar
  10. Eiben, A., & Smith, J. (2007). Introduction to evolutionary computing (2nd ed.). Berlin: Springer. Google Scholar
  11. Garnier, J., Kallel, L., & Schoenauer, M. (1999). Rigorous hitting times for binary mutations. Evolutionary Computation, 7(2), 173–203. CrossRefGoogle Scholar
  12. Giel, O., & Wegener, I. (2003). Evolutionary algorithms and the maximum matching problem. In LNCS : Vol. 2607. Proceedings of the 20th annual symposium on theoretical aspects of computer science (STACS ’03) (pp. 415–426). Berlin: Springer. Google Scholar
  13. Gutjahr, W. J. (2002). ACO algorithms with guaranteed convergence to the optimal solution. Information Processing Letters, 82(3), 145–153. zbMATHCrossRefMathSciNetGoogle Scholar
  14. Gutjahr, W. J. (2006). On the finite-time dynamics of ant colony optimization. Methodology and Computing in Applied Probability, 8(1), 105–133. zbMATHCrossRefMathSciNetGoogle Scholar
  15. Gutjahr, W. J. (2007). Mathematical runtime analysis of ACO algorithms: Survey on an emerging issue. Swarm Intelligence, 1, 59–79. CrossRefGoogle Scholar
  16. Gutjahr, W. J. (2008). First steps to the runtime complexity analysis of ant colony optimization. Computers and Operations Research, 35(9), 2711–2727. zbMATHCrossRefGoogle Scholar
  17. Gutjahr, W. J., & Sebastiani, G. (2008). Runtime analysis of ant colony optimization with best-so-far reinforcement. Methodology and Computing in Applied Probability, 10, 409–433. CrossRefMathSciNetGoogle Scholar
  18. Jansen, T. Sudholt, D. (2009, to appear). Analysis of an asymmetric mutation operator. Evolutionary Computation. Google Scholar
  19. Jansen, T., & Wegener, I. (2001). Evolutionary algorithms—how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Transactions on Evolutionary Computation, 5(6), 589–599. CrossRefGoogle Scholar
  20. Mitzenmacher, M., & Upfal, E. (2005). Probability and computing—randomized algorithms and probabilistic analysis. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  21. Motwani, R., & Raghavan, P. (1995). Randomized algorithms. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  22. Neumann, F. (2004). Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. In Proceedings of the congress on evolutionary computation (CEC ’04) (Vol. 1, pp. 904–910). New York: IEEE Press. Google Scholar
  23. Neumann, F. (2007). Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. European Journal of Operational Research, 181(3), 1620–1629. zbMATHCrossRefGoogle Scholar
  24. Neumann, F., & Wegener, I. (2006). Minimum spanning trees made easier via multi-objective optimization. Natural Computing, 5(3), 305–319. zbMATHCrossRefMathSciNetGoogle Scholar
  25. Neumann, F., & Wegener, I. (2007). Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Computer Science, 378(1), 32–40. zbMATHCrossRefMathSciNetGoogle Scholar
  26. Neumann, F., & Witt, C. (2006). Runtime analysis of a simple ant colony optimization algorithm. In LNCS : Vol. 4288. Proceedings of the 17th international symposium on algorithms and computation (ISAAC ’06) (pp. 618–627). Berlin: Springer. Extended version to appear in Algorithmica. Google Scholar
  27. Neumann, F., Sudholt, D., & Witt, C. (2007). Comparing variants of MMAS ACO algorithms on pseudo-Boolean functions. In LNCS : Vol. 4638. Proceedings of engineering stochastic local search algorithms (SLS ’07) (pp. 61–75). Berlin: Springer. Google Scholar
  28. Rudolph, G. (1997). Convergence properties of evolutionary algorithms. Hamburg: Kovač. Google Scholar
  29. Scharnow, J., Tinnefeld, K., & Wegener, I. (2004). The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms, 3(4), 349–366. zbMATHCrossRefMathSciNetGoogle Scholar
  30. Stützle, T., & Hoos, H. H. (2000). MAX-MIN ant system. Future Generations Computer Systems, 16, 889–914. CrossRefGoogle Scholar
  31. Wegener, I. (2002). Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In R. Sarker, X. Yao, & M. Mohammadian (Eds.), Evolutionary optimization (pp. 349–369). Dordrecht: Kluwer Academic. Google Scholar
  32. Wegener, I., & Witt, C. (2005). On the optimization of monotone polynomials by simple randomized search heuristics. Combinatorics, Probability and Computing, 14, 225–247. zbMATHCrossRefMathSciNetGoogle Scholar
  33. Witt, C. (2005). Worst-case and average-case approximations by simple randomized search heuristics. In LNCS : Vol. 3404. Proceedings of the 22nd symposium on theoretical aspects of computer science (STACS ’05) (pp. 44–56). Berlin: Springer. Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Algorithms and ComplexityMax-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Fakultät für Informatik, LS 2Technische Universität DortmundDortmundGermany

Personalised recommendations