Swarm Intelligence

, Volume 2, Issue 2–4, pp 189–208 | Cite as

Massively multi-robot simulation in stage

Article

Abstract

Stage is a C++ software library that simulates multiple mobile robots. Stage version 2, as the simulation backend for the Player/Stage system, may be the most commonly used robot simulator in research and university teaching today. Development of Stage version 3 has focused on improving scalability, usability, and portability. This paper examines Stage’s scalability.

We propose a simple benchmark for multi-robot simulator performance, and present results for Stage. Run time is shown to scale approximately linearly with population size up to 100,000 robots. For example, Stage simulates 1 simple robot at around 1,000 times faster than real time, and 1,000 simple robots at around real time. These results suggest that Stage may be useful for swarm robotics researchers who would otherwise use custom simulators, with their attendant disadvantages in terms of code reuse and transparency.

Keywords

Simulation Swarm Multi-robot Stage Player/stage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Video file

Video file

References

  1. Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. In Proceedings of the conference of the European association for computer graphics (Eurographics ’87) (pp. 3–10). Amsterdam: Elsevier Science. Google Scholar
  2. Anderson, M., Thaete, L., & Wiegand, N. (2007). Player/Stage: a unifying paradigm to improve robotics education delivery. In Workshop on research in robots for education at robotics: science and systems conference. Google Scholar
  3. Balch, T. Behavioral diversity in learning robot teams. PhD thesis, College of Computing, Georgia Institute of Technology, 1998. Google Scholar
  4. Barroso, L. A., Dean, J., & Holzle, U. (2003). Web search for a planet: the Google cluster architecture. IEEE Micro, 23(2), 22–28. CrossRefGoogle Scholar
  5. Batalin, M. A., & Sukhatme, G. S. (2003). Efficient exploration without localization. In Proceedings of the IEEE international conference on robotics and automation (pp. 2714–2719). Los Alamitos: IEEE Computer Society Press. Google Scholar
  6. Batalin, M. A., & Sukhatme, G. S. (2004). Using a sensor network for distributed multi-robot task allocation. In Proceedings of the IEEE international conference on robotics and automation (pp. 158–164). Los Alamitos: IEEE Computer Society Press. Google Scholar
  7. Batalin, M., & Sukhatme, G. (2005). The analysis of an efficient algorithm for robot coverage and exploration based on sensor network deployment. In Proceedings of the IEEE international conference on robotics and automation (pp. 3478–3485). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  8. Busch, M., Skubic, M., Keller, J., & Stone, K. (2007). A robot in a water maze: learning a spatial memory task. In Proceedings of the IEEE international conference on robotics and automation (pp. 1727–1732). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  9. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., & Scrapper, C. (2007). USARSim: a robot simulator for research and education. In Proceedings of the IEEE international conference on robotics and automation (pp. 1400–1405). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  10. Chang, R. S., & Wang, S. H. (2008). Self-deployment by density control in sensor networks. IEEE Transactions on Vehicular Technology, 57(3), 1745–1755. CrossRefMathSciNetGoogle Scholar
  11. Chang, H., Lee, C., Lu, Y., & Hu, Y. (2006). Simultaneous localization and mapping with environmental structure prediction. In Proceedings of the IEEE international conference on robotics and automation (pp. 4069–4074). Los Alamitos: IEEE Computer Society Press. Google Scholar
  12. Craighead, J., Murphy, R., Burke, J., & Goldiez, B. (2007). A survey of commercial & open source unmanned vehicle simulators. In Proceedings of the IEEE international conference on robotics and automation (pp. 852–857). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  13. Dorigo, M., & Şahin, E. (Eds.) Special issue: swarm robotics. Autonomous Robots, 17(2–3), 2004. Google Scholar
  14. Fredslund, J., & Matarić, M. J. (2002). Huey, Dewey, Louie, and GUI—commanding robot formations. In Proceedings of the IEEE international conference on robotics and automation (pp. 175–180). Los Alamitos: IEEE Computer Society Press. Google Scholar
  15. Gerkey, B. P., Vaughan, R. T., Støy, K., Howard, A., Sukhatme, G., & Matarić, M. J. (2001). Most valuable player: a robot device server for distributed control. In Proceedings of the IEEE/RSJ international conference on intelligent robotic systems (pp. 1226–1231). Los Alamitos: IEEE Computer Society Press. Google Scholar
  16. Gerkey, B., Vaughan, R. T., & Howard, A. (2003). The player/stage project: tools for multi-robot and distributed sensor systems. In Proceedings of the 11th international conference on advanced robotics (pp. 317–323). Los Alamitos: IEEE Computer Society Press. Google Scholar
  17. Heckbert, P. (Ed). (1994). Graphics gems IV. Boston: Academic Press. MATHGoogle Scholar
  18. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Proceedings of the international symposium on distributed autonomous robotic systems (pp. 299–308). New York: Springer. Google Scholar
  19. Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with large heterogeneous mobile robot team: exploration, mapping, deployment and detection. International Journal of Robotics Research, 25(5), 431–447. CrossRefGoogle Scholar
  20. Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2149–2154). Los Alamitos: IEEE Computer Society Press. Google Scholar
  21. Kramer, J., & Schultz, M. (2007). Development environments for autonomous mobile robots: a survey. Autonomous Robots, 22(2), 101–132. CrossRefGoogle Scholar
  22. Lin, L., & Zheng, Z. (2005). Combinatorial bids based multi-robot task allocation method. In Proceedings of the IEEE international conference on robotics and automation (pp. 1145–1150). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  23. Michel, O. (2004). Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 39–42. Google Scholar
  24. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Robots, 17(2-3), 193–221. CrossRefGoogle Scholar
  25. Şahin, E., & Spears, W. (2005). In Lecture notes in computer science : Vol. 3342. Swarm robotics: SAB 2004 international workshop, Revised Selected Papers Santa Monica, CA, USA, July 17, 2004. Heidelberg: Springer. Google Scholar
  26. Scrapper, C., Balakirsky, S., & Messina, E. (2006). MOAST and USARSim–a combined framework for the development and testing of autonomous systems. In Proceedings of the SPIE. Bellingham: SPIE. Google Scholar
  27. Shell, D., & Matarić, M. (2004). Directional audio beacon deployment: an assistive multi-robot application. In Proceedings of the IEEE international conference on robotics and automation (pp. 2588–2594). Los Alamitos: IEEE Computer Society Press. Google Scholar
  28. Seugling, A., & Rolin, M. (2006). Evaluation of physics engines and implementation of a physics module in a 3D authoring tool. Department of Computer Science, Umeoa University, Sweden: Master’s thesis. Google Scholar
  29. Winfield, A.F.T. (2000). Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In Distributed autonomous robotic systems (pp. 273–282). Heidelberg: Springer. Google Scholar
  30. Ye, W., Vaughan, R. T., Sukhatme, G. S., Heidemann, J., Estrin, D., & Matarić, M. J. (2001). Evaluating control strategies for wireless-networked robots using an integrated robot and network simulation. In Proceedings of the IEEE international conference on robotics and automation (pp. 2941–2947). Los Alamitos: IEEE Computer Society Press. Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.Simon Fraser UniversityBurnabyCanada

Personalised recommendations