Advertisement

Swarm Intelligence

, Volume 2, Issue 2–4, pp 167–188 | Cite as

Ant-based swarming with positionless micro air vehicles for communication relay

  • Sabine HauertEmail author
  • Laurent Winkler
  • Jean-Christophe Zufferey
  • Dario Floreano
Article

Abstract

Swarming without positioning information is interesting in application-oriented systems because it alleviates the need for sensors which are dependent on the environment, expensive in terms of energy, cost, size and weight, or unusable at useful ranges for real-life scenarios. This principle is applied to the development of a swarm of micro air vehicles (SMAVs) for the deployment of ad hoc wireless communication networks (SMAVNETs) between ground users in disaster areas. Rather than relying on positioning information, MAVs rely on local communication with immediate neighbors and proprioceptive sensors which provide heading, speed and altitude.

To solve the challenging task of designing agent controllers to achieve the swarm behavior of the SMAVNET, inspiration is taken from army ants which are capable of laying and maintaining pheromone paths leading from their nest to food sources in nature. This is analogous to the deployment of communication pathways between multiple ground users. However, instead of being physically deposited in the air or on a map, pheromone is virtually deposited on the MAVs using local communication. This approach is investigated in 3D simulation in a simplified scenario with two ground users.

Keywords

Swarm intelligence Swarming without positioning Micro air vehicles (MAVs) Communication relay Army ants Pheromone robotics Situated communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11721_2008_13_MOESM1_ESM.mp4 (25.2 mb)
VideoObject

References

  1. Allred, J., Hasan, A. B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Han, R., Lawrence, D., & Mohseni, K. (2007). SensorFlock: an airborne wireless sensor network of micro-air vehicles. In Proceedings of the 5th international conference on embedded networked sensor systems (pp. 117–129). New York: ACM Press. CrossRefGoogle Scholar
  2. Basu, P., Redi, J., & Shurbanov, V. (2004). Coordinated flocking of UAVs for improved connectivity of mobile ground nodes. In Proceedings of the IEEE military communications conference (Vol. 3, pp. 1628–1634). Piscataway: IEEE Press. Google Scholar
  3. Burton, J. L., & Franks, N. R. (1985). The foraging ecology of the army ant Eciton rapax: an ergonomic enigma? Ecological Entomology, 10(2), 131–141. CrossRefGoogle Scholar
  4. Camazine, S., Crailsheim, K., Hrassnigg, N., Robinson, G. E., Leonhard, B., & Kropiunigg, H. (1998). Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie, 29(1), 113–126. CrossRefGoogle Scholar
  5. Campo, A., & Dorigo, M. (2007). Efficient multi-foraging in swarm robotics. In Lecture notes in artificial intelligence : Vol. 4648. Advances in artificial life, proceedings of the ninth European conference on artificial life (pp. 696–705). Berlin: Springer. Google Scholar
  6. Crailsheim, K. (1998). Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie, 29(1), 97–112. CrossRefGoogle Scholar
  7. De Nardi, R., & Holland, O. (2007). UltraSwarm: a further step towards a flock of miniature helicopters. In Lecture notes in computer science : Vol. 4433. Swarm robotics (pp. 116–128). Berlin: Springer. CrossRefGoogle Scholar
  8. Deneubourg, J. L., Goss, S., Franks, N. R., & Pasteels, J. M. (1989). The blind leading the blind: modeling chemically mediated army ant raid patterns. Journal of Insect Behavior, 2(5), 719–725. CrossRefGoogle Scholar
  9. Dixon, C., & Frew, E. W. (2007). Maintaining optimal communication chains in robotic sensor networks using mobility control. In Proceedings of the 1st international conference on robot communication and coordination (pp. 1–8). Piscataway: IEEE Press. Google Scholar
  10. Elston, J., & Frew, E. W. (2008). Hierarchical distributed control for search and tracking by heterogeneous aerial robot networks. In Proceedings of the IEEE international conference on robotics and automation (pp. 170–175). Piscataway: IEEE Press. Google Scholar
  11. Fenton, L. (1960). The sum of log-normal probability distributions in scatter transmission systems. Proceedings of the IEEE Transactions on Communications Systems, 8(1), 57–67. CrossRefMathSciNetGoogle Scholar
  12. Flint, M., Polycarpou, M., & Fernández-Gaucherand, E. (2002). Cooperative control for multiple autonomous UAVs searching for targets. In Proceedings of the 41st IEEE conference on decision and control (Vol. 3, pp. 2823–2828). Piscataway: IEEE Press. CrossRefGoogle Scholar
  13. Franks, N. R., Gomez, N., Goss, S., & Deneubourg, J. L. (2001). The blind leading the blind in army ant raid patterns: testing a model of self-organization (Hymenoptera: Formicidae). Journal of Insect Behavior, 4(5), 583–607. CrossRefGoogle Scholar
  14. Gaudiano, P., Bonabeau, E., & Shargel, B. (2005). Evolving behaviors for a swarm of unmanned air vehicles. In Proceedings of the IEEE swarm intelligence symposium (pp. 317–324). Piscataway: IEEE Press. CrossRefGoogle Scholar
  15. Holland, O., Woods, J., De Nardi, R., & Clark, A. (2005). Beyond swarm intelligence: the UltraSwarm. In Proceedings of the IEEE swarm intelligence symposium (pp. 217–224). Piscataway: IEEE Press. CrossRefGoogle Scholar
  16. Hu, L., & Evans, D. (2004). Localization for mobile sensor networks. In Proceedings of the 10th annual international conference on mobile computing and networking (pp. 45–57). New York: ACM Press. CrossRefGoogle Scholar
  17. Kadrovach, B. A., & Lamont, G. B. (2001). Design and analysis of swarm-based sensor systems. In Proceedings of the 44th IEEE Midwest symposium on circuits and systems (Vol. 1, pp. 487–490). Piscataway: IEEE Press. Google Scholar
  18. Kovacina, M., Palmer, D., Yang, G., & Vaidyanathan, R. (2002). Multi-agent control algorithms for chemical cloud detection and mapping using unmanned air vehicles. In Proceedings of the IEEE/RSJ international conference on intelligent robots and system (Vol. 3, pp. 2782–2788). Piscataway: IEEE Press. CrossRefGoogle Scholar
  19. Kuiper, E., & Nadjm-Tehrani, S. (2006). Mobility models for UAV group reconnaissance applications. In Proceedings of the IEEE international conference on wireless and mobile communications. Piscataway: IEEE Press. doi: 10.1109/ICWMC.2006.63. Google Scholar
  20. Lawrence, D., Donahue, R., Mohseni, K., & Han, R. (2004). Information energy for sensor-reactive UAV flock control. In Proceedings of the AIAA 3rd “Unmanned unlimited” technical conference. Reston: AIAA Press, AIAA paper 2004-6530. Google Scholar
  21. Merino, L., Caballero, F., Martínez-de Dios, J. R., Ferruz, J., & Ollero, A. (2006). A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. Journal of Field Robotics, 23, 165–184. CrossRefGoogle Scholar
  22. Nembrini, J., Winfield, A., & Melhuish, C. (2002). Minimalist coherent swarming of wireless networked autonomous mobile robots. In From animals to animats 7, proceedings of the 7th international conference on simulation of adaptive behavior (pp. 273–382). Cambridge: MIT Press. Google Scholar
  23. Nembrini, J., Reeves, N., & Poncet, E. (2005). Mascarillons: flying swarm intelligence for architectural research. In Proceedings of the IEEE swarm intelligence symposium (pp. 225–232). Piscataway: IEEE Press. CrossRefGoogle Scholar
  24. Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23. CrossRefGoogle Scholar
  25. Oh, E. S. (2003). Information and communication technology in the service of disaster mitigation and humanitarian relief. In Proceedings of the IEEE 9th Asia-Pacific conference on communications (Vol. 2, pp. 730–734). Piscataway: IEEE Press. Google Scholar
  26. Pack, D. J., & York, G. W. P. (2005). Developing a control architecture for multiple unmanned aerial vehicles to search and localize RF time-varying mobile targets, part I. In Proceedings of the IEEE international conference on robotics and automation (pp. 3954–3959). Piscataway: IEEE Press. CrossRefGoogle Scholar
  27. Parunak, H. V. D., Brueckner, S. A., & Sauter, J. (2005). Digital pheromones for coordination of unmanned vehicles. In Lecture notes in computer science : Vol. 3374. Environments for multi-agent systems (pp. 246–263). Berlin: Springer. Google Scholar
  28. Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11, 319–324. zbMATHCrossRefGoogle Scholar
  29. Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model. In SIGGRAPH computer graphics (Vol. 21, pp. 25–34). New York: ACM Press. Google Scholar
  30. Richards, M. D., Whitley, D., & Beveridge, J. R. (2005). Evolving cooperative strategies for UAV teams. In Proceedings of the genetic and evolutionary computation conference (Vol. 2, pp. 1721–1728). New York: ACM Press. CrossRefGoogle Scholar
  31. Rodriguez, A., Andersen, E., Bradley, J., & Taylor, C. (2007). Wind estimation using an optical flow sensor on a miniature air vehicle. In Proceedings of the AIAA conference on guidance, navigation, and control. Reston: AIAA Press; AIAA paper 2007-6614. Google Scholar
  32. Ryan, A., Tisdale, J., Godwin, M., Coatta, D., Nguyen, D., Spry, S., Sengupta, R., & Hedrick, J. K. (2007). Decentralized control of unmanned aerial vehicle collaborative sensing missions. In Proceedings of the American control conference (pp. 4672–4677). Piscataway: IEEE Press. CrossRefGoogle Scholar
  33. Şahin, E. (2005). Swarm robotics: from sources of inspiration to domains of application. In Lecture notes in computer science : Vol. 3342. Swarm robotics (pp. 10–20). Berlin: Springer. Google Scholar
  34. Sauter, J. A., Matthews, R., Parunak, H. V. D., & Brueckner, S. A. (2005). Performance of digital pheromones for swarming vehicle control. In Proceedings of the 4th international joint conference on autonomous agents and multi-agent systems (pp. 903–910). New York: ACM Press. Google Scholar
  35. Schmickl, T., & Crailsheim, K. (2006). Trophallaxis within a robot swarm: bio-inspired communication among robots in a swarm. In Proceedings of the 1st IEEE/RAS-EMBS international conference on biomedical robotics and biomechanotronics (pp. 377–382). Piscataway: IEEE Press. CrossRefGoogle Scholar
  36. Schmickl, T., & Crailsheim, K. (2007). Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Autonomous Robots, 25(1–2), 171–188. Google Scholar
  37. Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robots. Cambridge: Bradford Book/MIT Press. Google Scholar
  38. Solé, R., Bonabeau, E., Fernàndez, P., & Marìn, J. (2000). Pattern formation and optimization in army ant raids. Artificial Life, 6(3), 219–226. CrossRefGoogle Scholar
  39. Soto, J., & Lin, K. C. (2005). Using genetic algorithms to evolve the control rules of a swarm of UAVs. In Proceedings of the IEEE international symposium on collaborative technologies and systems (pp. 359–365). Piscataway: IEEE Press. CrossRefGoogle Scholar
  40. Spears, W. M., Spears, D. F., Heil, R., Kerr, W., & Hettiarachchi, S. (2005). An overview of physicomimetics. In Lecture notes in computer science : Vol. 3342. Simulation of adaptive behaviour, workshop on swarm robotics (pp. 84–97). Berlin: Springer. Google Scholar
  41. Støy, K. (2001). Using situated communication in distributed autonomous mobile robots. In Proceedings of the 7th Scandinavian conference on artificial intelligence (pp. 44–52). Amsterdam: IOS Press. Google Scholar
  42. Turgut, A., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking with a mobile robot swarm. In Proceedings of the 7th international joint conference on autonomous agents and multi-agent systems (pp. 39–46). New York: ACM Press. Google Scholar
  43. Vincent, P., & Rubin, I. (2004). A framework and analysis for cooperative search using UAV swarms. In Proceedings of the ACM symposium on applied computing (pp. 79–86). New York: ACM Press. CrossRefGoogle Scholar
  44. Winfield, A. (2000). Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In Proceedings of distributed autonomous systems 4 (pp. 273–282). Berlin: Springer. Google Scholar
  45. Winfield, A. F. T., Harper, C. J., & Nembrini, J. (2005a). Towards dependable swarms and a new discipline of swarm engineering. In Lecture notes in computer science : Vol. 4433. Swarm robotics (pp. 126–142). Berlin: Springer. Google Scholar
  46. Winfield, A. F. T., Sa, J., Fernández-Gago, M. C., Dixon, C., & Fisher, M. (2005b). On formal specification of emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems, 2(4), 363–370. Google Scholar
  47. Wu, A. S., Schultz, A. C., & Agah, A. (1999). Evolving control for distributed micro air vehicles. In Proceedings of the IEEE international symposium on computational intelligence in robotics and automation (pp. 174–179). Piscataway: IEEE Press. Google Scholar
  48. Yang, Y., Minai, A. A., & Polycarpou, M. M. (2005). Evidential map-building approaches for multi-UAV cooperative search. In Proceedings of the IEEE American control conference (pp. 116–121). Piscataway: IEEE Press. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Sabine Hauert
    • 1
    Email author
  • Laurent Winkler
    • 1
  • Jean-Christophe Zufferey
    • 1
  • Dario Floreano
    • 1
  1. 1.Laboratory of Intelligent SystemsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations