Swarm Intelligence

, Volume 2, Issue 1, pp 43–68 | Cite as

Ant clustering with locally weighted ant perception and diversified memory

  • Gilbert L. Peterson
  • Christopher B. Mayer
  • Thomas L. Kubler
Article

Abstract

Ant clustering algorithms are a robust and flexible tool for clustering data that have produced some promising results. This paper introduces two improvements that can be incorporated into any ant clustering algorithm: kernel function similarity weights and a similarity memory model replacement scheme. A kernel function weights objects within an ant’s neighborhood according to the object distance and provides an alternate interpretation of the similarity of objects in an ant’s neighborhood. Ants can hill-climb the kernel gradients as they look for a suitable place to drop a carried object. The similarity memory model equips ants with a small memory consisting of a sampling of the current clustering space. We test several kernel functions and memory replacement schemes on the Iris, Wisconsin Breast Cancer, and Lincoln Lab network intrusion datasets. Compared to a basic ant clustering algorithm, we show that kernel functions and the similarity memory model increase clustering speed and cluster quality, especially for datasets with an unbalanced class distribution, such as network intrusion.

Keywords

Ant clustering Locally weighted regression Intrusion detection system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning. Artificial Intelligence Review, 11, 11–73. CrossRefGoogle Scholar
  2. Cheeseman, P., & Stutz, J. (1996). Bayesian classification (autoclass): theory and results. In Advances in knowledge discovery and data mining (pp. 153–180). Menlo Park, CA: AAAI Press. Google Scholar
  3. Chen, L., Liue, Y., Fattah, C., & Yan, G. (2004). HDACC: A heuristic density-based ant colony clustering algorithm. In IEEE/WIC/ACM international conference on intelligent agent technology (IAT 2004) (pp. 397–400). Los Alamitos, CA: IEEE Computer Society Press. CrossRefGoogle Scholar
  4. Cucchiara, R. (1993). Analysis and comparison of different genetic models for the clustering problem in image analysis. In International conference on artificial neural networks and genetic algorithms (pp. 423–427). Berlin: Springer. Google Scholar
  5. Dasgupta, D., & Gonzales, F. (2002). An immunity-based technique to characterize intrusions in computer networks. IEEE Transactions on Evolutionary Computation, 6, 179–188. Google Scholar
  6. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1990). The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of the first international conference on simulation of adaptive behavior: from animals to animats (pp. 356–363). Cambridge, MA: MIT Press. Google Scholar
  7. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge, MA: MIT Press. MATHGoogle Scholar
  8. Ekola, T., Laurikkala, M., Lehto, T., & Koivisto, H. (2004). Network traffic analysis using clustering ants. In Proceedings of the 17th world automation congress (pp. 275–280). Los Alamitos, CA: IEEE Computer Society Press. Google Scholar
  9. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annual Eugenics, 7(II), 179–188. Google Scholar
  10. Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2(2), 139–172. Google Scholar
  11. Gennari, J. H., Langley, P., & Fisher, D. (1990). Models of incremental concept formation. Artificial Intelligence, 40, 11–61. CrossRefGoogle Scholar
  12. Haines, J., Lippmann, R., Fried, D., Tran, E., Boswell, S., & Zissman, M. (1999). DARPA intrusion detection system evaluation: Design and procedures (Technical report). MIT Lincoln Laboratory Technical Report. Google Scholar
  13. Hamerly, G., & Elkan, C. (2003). Learning the k in k-means. In Advances in neural information processing systems (pp. 281–288). Cambridge, MA: MIT Press. Google Scholar
  14. Handl, J. (2003). Ant-based methods for tasks of clustering and topographic mapping: Extensions, analysis and comparison with alternative methods (Master’s thesis). Germany: Universität Erlangen-Nürnberg. URL http://www.handl.julia.de.
  15. Handl, J., & Meyer, B. (2007). Ant-based and swarm-based clustering. Swarm Intelligence, 1(2), 95–113. CrossRefGoogle Scholar
  16. Handl, J., Knowles, J., & Dorigo, M. (2003a). Ant-based clustering: a comparative study of its relative performance with respect to k-means, average link, and 1d-som (Technical report TR/IRIDIA/2003-24). Université Libre de Bruxelles. Google Scholar
  17. Handl, J., Knowles, J., & Dorigo, M. (2003b). On the performance of ant-based clustering. In Frontiers in artificial intelligence and applications : Vol. 104. Design and application of hybrid intelligent systems (pp. 204–213). Amsterdam: IOS Press. Google Scholar
  18. Handl, J., Knowles, K., & Kell, D. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15), 3201–3212. CrossRefGoogle Scholar
  19. Handl, J., Knowles, J., & Dorigo, M. (2006). Ant-based clustering and topographic mapping. Artificial Life, 12(1), 35–61. CrossRefGoogle Scholar
  20. Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218. CrossRefGoogle Scholar
  21. Jones, D. R., & Beltrano, M. A. (1991). Solving partitioning problems with genetic algorithms. In Fourth international conference on genetic algorithms (pp. 442–449). San Mateo, CA: Morgan Kaufmann. Google Scholar
  22. Kanade, P. M., & Hall, L. O. (2004). Fuzzy ant clustering by centroid positioning. In Proceedings of the 2004 IEEE international conference on fuzzy systems (pp. 371–376). Los Alamitos, CA: IEEE Computer Society Press. Google Scholar
  23. Luc̆ić, P. (2002). Modelling transportation systems using concepts of swarm intelligence and soft computing (Ph.D. thesis). Virginia Polytechnic Institute. Google Scholar
  24. Lumer, E. B., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In Third international conference on simulation of adaptive behavior: From animals to animats (pp. 501–508). Cambridge, MA: MIT Press. Google Scholar
  25. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley symposium on mathematical statistics and probability (pp. 281–297). Berkeley, CA: University of California Press. Google Scholar
  26. Mangasarian, O. L., & Wolberg, W. H. (1990). Cancer diagnosis via linear programming. SIAM News, 23(5), 1–18. Google Scholar
  27. Monmarché, N. (1999). On data clustering with artificial ants. In A. A. Freitas (Ed.), Data mining with evolutionary algorithms: Research directions—AAAI-99 and GECCO-99 workshop (pp. 23–26). Menlo Park, CA: AAAI Press. Google Scholar
  28. Montes de Oca, M. A., Garrido, L., & Aguirre, J. L. (2004). A first approach to study the effects of direct information exchange between agents in ant-based clustering. In S. Kumar, A. Abraham, J. Harnisch, & A. Satyadas (Eds.), Proceedings of the first world congress on lateral computing WCLC 2004. World Federation on Lateral-Computing, Bangalore, India. Google Scholar
  29. Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
  30. Pelleg, D., & Moore, A. (1999). Accelerating exact k-means algorithms with geometric reasoning. In Fifth ACM SIGKDD international conference on knowledge discovery and data mining (KDD-99) (pp. 277–281). New York, NY: ACM. CrossRefGoogle Scholar
  31. Pomerlau, D. (1993). Knowledge-based training of artificial neural networks for autonomous robot driving. In J. H. Connel, & S. Mahadevan (Eds.), Robot Learning. Dordrecht: Kluwer Academic. Google Scholar
  32. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846–850. CrossRefGoogle Scholar
  33. Rose, K., Gurewitz, E., & Fox, G. C. (1990). Statistical mechanics and phase transitions in clustering. Physical Review Letters, 65(8), 945–948. CrossRefGoogle Scholar
  34. Sammon Jr., J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5), 401–409. CrossRefGoogle Scholar
  35. Schockaert, S., De Cock, M., Cornelis, C., & Kerre, E. E. (2004a). Efficient clustering with fuzzy ants. In Applied computational intelligence, proceedings of the 6th international FLINS conference (pp. 195–200). Singapore: World Scientific. CrossRefGoogle Scholar
  36. Schockaert, S., De Cock, M., Cornelis, C., & Kerre, E. E. (2004b). Fuzzy ant based clustering. In LNCS : Vol. 3172. Ant colony optimization and swarm intelligence (pp. 342–349). Berlin: Springer. Google Scholar
  37. Vizine, A., de Castro, L., Hruschka, E., & Gudwin, R. (2005). Towards improving clustering ants: An adaptive ant clustering algorithm. Informatica, 29(2), 143–154. MATHGoogle Scholar
  38. Yeung, K. Y., & Ruzzo, W. L. (2001). Details of the Adjusted Rand Index and clustering algorithms. Supplement to the paper “An empirical study on Principal Component Analysis for clustering gene expression data”. Bioinformatics, 9(17), 763–774. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Gilbert L. Peterson
    • 1
  • Christopher B. Mayer
    • 2
  • Thomas L. Kubler
    • 1
  1. 1.Department of Electrical and Computer EngineeringAir Force Institute of TechnologyWright-Patterson AFBUSA
  2. 2.Department of Electrical and Computer EngineeringUnited States Naval AcademyAnnapolisUSA

Personalised recommendations