Swarm Intelligence

, Volume 2, Issue 1, pp 25–41 | Cite as

Characteristics of ant-inspired traffic flow

Applying the social insect metaphor to traffic models
  • Alexander John
  • Andreas Schadschneider
  • Debashish Chowdhury
  • Katsuhiro Nishinari


We investigate the organization of traffic flow on preexisting uni- and bidirectional ant trails. Our investigations comprise a theoretical as well as an empirical part. We propose minimal models of uni- and bi-directional traffic flow implemented as cellular automata. Using these models, the spatio-temporal organization of ants on the trail is studied. Based on this, some unusual flow characteristics which differ from those known from other traffic systems, like vehicular traffic or pedestrians dynamics, are found. The theoretical investigations are supplemented by an empirical study of bidirectional traffic on a trail of Leptogenys processionalis. Finally, we discuss some plausible implications of our observations from the perspective of flow optimization.


Bidirectional ant-traffic Cellular automaton model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material


  1. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press. MATHGoogle Scholar
  2. Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behaviour. Nature, 406, 39–42. CrossRefGoogle Scholar
  3. Burd, M. (2006). Ecological consequences of traffic organisation in ant societies. Physica A, 372, 124–131. CrossRefGoogle Scholar
  4. Burd, M., Archer, D., Aranwela, N., & Stradling, D. J. (2002). Traffic dynamics of the leaf-cutting ant. Atta cephalotes. American Naturalist, 159, 283–293. CrossRefGoogle Scholar
  5. Chopard, B., & Droz, M. (1998). Cellular automata modelling of physical systems. Cambridge: Cambridge University Press. Google Scholar
  6. Chowdhury, D., Santen, L., & Schadschneider, A. (2000). Statistical physics of vehicular traffic and some related systems. Physics Reports, 329, 199–329. CrossRefMathSciNetGoogle Scholar
  7. Chowdhury, D., Guttal, V., Nishinari, K., & Schadschneider, A. (2002). A cellular-automata model of flow in ant-trails: Non-monotonic variation of speed with density. Journal of Physics A: Mathematical and General, 35, L573–L577. CrossRefMathSciNetMATHGoogle Scholar
  8. Chowdhury, D., Nishinari, K., & Schadschneider, A. (2004). Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Transition, 77, 601–624. CrossRefGoogle Scholar
  9. Couzin, I. D., & Franks, N. R. (2003). Self-organized lane formation and optimized traffic flow in army ants. Proceedings of Royal Society London B, 270, 139–146. CrossRefGoogle Scholar
  10. Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J.-L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428, 70–73. CrossRefGoogle Scholar
  11. Dussutour, A., Deneubourg, J.-L., & Fourcassié, V. (2005). Temporal organisation of bi-directional traffic in the ant Lasius niger (1). Journal of Experimental Biology, 208, 2903–2912. CrossRefGoogle Scholar
  12. Dussutour, A., Beshers, S., Deneubourg, J.-L., & Fourcassié, V. (2007). Crowding increases foraging efficiency in the leaf-cutting ant. Atta Colombica. Insectes Sociaux, 54, 168–165. Google Scholar
  13. Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: The Belknap Press of Harvard University Press. Google Scholar
  14. Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sunderland: Sinauer Associates. Google Scholar
  15. Jackson, D. E., & Ratnieks, F. L. W. (2006). Communication in ants. Current Biology, 16, R570–R574. CrossRefGoogle Scholar
  16. John, A. (2006). Physics of traffic on ant trails and related systems. Ph.D. thesis, Universität zu Köln, Germany. Google Scholar
  17. John, A., Schadschneider, A., Chowdhury, D., & Nishinari, K. (2004). Collective effects in traffic on bi-directional ant-trails. Journal of Theoretical Biology, 231, 279–285. CrossRefMathSciNetGoogle Scholar
  18. John, A., Kunwar, A., Namazi, A., Chowdhury, D., Nishinari, K., & Schadschneider, A. (2007a). Traffic on bi-directional ant-trails. In N. Waldau, P. Gattermann, H. Knoflacher, M. Schreckenberg (Eds.), Pedestrian and evacuation dynamics 2005 (pp. 465–470). Berlin: Springer. CrossRefGoogle Scholar
  19. John, A., Kunwar, A., Namazi, A., Schadschneider, A., Chowdhury, D., & Nishinari, K. (2007b). Traffic on bi-directional ant-trails: Coarsening behaviour and fundamental diagrams. In A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg, D.E. Wolf (Eds.), Traffic and granular flow ’05 (pp. 269–276). Berlin: Springer. CrossRefGoogle Scholar
  20. Johnson, K., & Rossi, L. F. (2006). A mathematical and experimental study of ant foraging line dynamics. Journal of Theoretical Biology, 241, 360–369. CrossRefMathSciNetGoogle Scholar
  21. Krug, J., & Ferrari, P. A. (1996). Phase transitions in driven diffusive systems with random rates. Journal of Physics A, 29, L465–L471. CrossRefGoogle Scholar
  22. Kunwar, A., John, A., Nishinari, K., Schadschneider, A., & Chowdhury, D. (2004). Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions. Journal of Physical Society of Japan, 73, 2979–2985. CrossRefMATHGoogle Scholar
  23. May, A. D. (1990). Traffic flow fundamentals. Englewood Cliffs: Prentice Hall. Google Scholar
  24. Moffet, M. W. (1987). Ants that go with the flow: A new method of orientation by mass communication. Naturwissenschaften, 74, 551–553. CrossRefGoogle Scholar
  25. Nagel, K., & Schreckenberg, M. (1992). A cellular automaton model for freeway traffic. Journal of Physics I France, 2, 2221–2229. CrossRefGoogle Scholar
  26. Schadschneider, A., Kirchner, A., & Nishinari, K. (2003). From ant trails to pedestrian dynamics. Applied Bionics and Biomechanics, 1, 11–19. CrossRefGoogle Scholar
  27. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., & Seyfried, A. (2008). Evacuation dynamics: Empirical results, modeling and applications. In Meyers B. (Ed.), Encyclopedia of complexity and system science. New York: Springer. Google Scholar
  28. Schütz, G. M. (2000). Exactly solvable models for many-body systems far from equilibrium. In C. Domb, J.L. Lebowitz (Eds.), Phase transitions and critical phenomena (Vol. 19, pp. 1–251). London: Academic Press. CrossRefGoogle Scholar
  29. Tripathy, G., & Barma, M. (1997). Steady state and dynamics of driven diffusive systems with quenched disorder. Physics Review Letters, 78, 3039–3042. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Alexander John
    • 1
  • Andreas Schadschneider
    • 1
    • 2
  • Debashish Chowdhury
    • 3
  • Katsuhiro Nishinari
    • 4
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  2. 2.Interdisziplinäres Zentrum für komplexe SystemeBonnGermany
  3. 3.Department of PhysicsIndian Institute of TechnologyKanpurIndia
  4. 4.Department of Aeronautics and Astronautics, Faculty of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations