Swarm Intelligence

, Volume 1, Issue 2, pp 95–113 | Cite as

Ant-based and swarm-based clustering

Article

Abstract

Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as hierarchical clustering and k-means. Ant-based clustering stands out as the most widely used group of swarm-based clustering algorithms. Broadly speaking, there are two main types of ant-based clustering: the first group of methods directly mimics the clustering behavior observed in real ant colonies. The second group is less directly inspired by nature: the clustering task is reformulated as an optimization task and general purpose ant-based optimization heuristics are utilized to find good or near-optimal clusterings. This papers reviews both approaches and places these methods in the wider context of general swarm-based clustering approaches.

Keywords

Ant-based clustering Swarm-based clustering Ant colony optimization Particle swarm optimization Clustering Data-mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., & Ramos, V. (2003). Web usage mining using artificial ant colony clustering and linear genetic programming. In R. Sarker (Ed.), The 2003 congress on evolutionary computation, CEC 2003 (Vol. 2, pp. 1384–1391). Piscataway: IEEE Press. CrossRefGoogle Scholar
  2. Albuquerque, P., & Dupuis, A. (2002). A parallel cellular ant colony algorithm for clustering and sorting. In S. Bandini, B. Chopard, & M. Tomassini (Eds.), Lecture notes in computer science : Vol. 2493. Cellular automata: 5th international conference on cellular automata for research and industry, ACRI 2002 (pp. 220–230). Berlin: Springer. Google Scholar
  3. Arabie, P., Lawrence, J. H., & Soete, G. D. (1996). Clustering and classification. River Edge: World Scientific. MATHGoogle Scholar
  4. Azzag, H., Guinot, C., & Venturini, G. (2004). How to use ants for hierarchical clustering. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Ant colony optimization and swarm intelligence: 4th international workshop, ANTS 2004 (pp. 350–357). Berlin: Springer. Google Scholar
  5. Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm. In A. Prieditis & S. Russel (Eds.), Machine learning, proceedings of the twelfth international conference on machine learning, ICML 1998 (pp. 38–46). San Francisco: Kaufmann. Google Scholar
  6. Bilenko, M., Basu, S., & Mooney, R. (2004). Integrating constraints and metric learning in semi-supervised clustering. In R. Greiner & D. Schuurmans (Eds.), Proceedings of the 21st international conference on machine learning, ICML 2004 (pp. 119–126). New York: ACM. Google Scholar
  7. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence—from natural to artificial systems. Oxford: Oxford University Press. MATHGoogle Scholar
  8. Borg, I., & Groenen, P. (1997). Modern multidimensional scaling: theory and applications. New York: Springer. MATHGoogle Scholar
  9. Campos, M., Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (2001). Dynamic scheduling and division of labor in social insects. Adaptive Behaviour, 8(2), 83–92. CrossRefGoogle Scholar
  10. Chandrasekar, R., & Srinivasan, T. (2007). An improved probabilistic ant based clustering for distributed databases. In M. M. Veloso (Ed.), IJCAI 2007, proceedings of 20th international joint conference on artificial intelligence (pp. 2701–2706). Online proceedings available at http://www.ijcai.org/papers07/contents.php.
  11. Channa, A. H., Rajpoot, N. M., & Rajpoot, K. M. (2006). Texture segmentation using ant tree clustering. In 2006 IEEE international conference on engineering of intelligent systems, ICEIS 2006 (pp. 1–6). Piscataway: IEEE Press. CrossRefGoogle Scholar
  12. Chen, L., Xu, X.-H., & Chen, Y.-X. (2004). An adaptive ant colony clustering algorithm. In Proceedings of the international conference on machine learning and cybernetics, ICMLC 04 (Vol. 3, pp. 1387–1392). Piscataway: IEEE Press. CrossRefGoogle Scholar
  13. Chen, L., Tu, L., & Chen, H. (2005). A novel ant clustering algorithm with digraph. In L. Wang, K. Chen, & Y. S. Ong (Eds.), Lecture notes in computer science : Vol. 3611. Advances in natural computation first international conference, ICNC 2005 (pp. 1218–1228). Berlin: Springer. Google Scholar
  14. Chu, S.-C., Roddick, J. F., Su, C.-J., & Pan, J.-S. (2004). Constrained ant colony optimization for data clustering. In C. Zhang, H. W. Guesgen, & W. K. Yeap (Eds.), Lecture notes in artificial intelligence : Vol. 2417. PRICAI 2004: trends in artificial intelligence: 8th pacific rim international conference on artificial intelligence (pp. 534–543). Berlin: Springer. Google Scholar
  15. Cole, R. M. (1998). Clustering with genetic algorithms. Master’s thesis, Department of Computer Science, University of Western Australia, Australia. Google Scholar
  16. Cordón, O., Herrera, F., & Stützle, T. (2002). A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathware and Soft Computing, 9(2–3), 141–175. MATHMathSciNetGoogle Scholar
  17. Couzin, I., Krause, J., James, R., Ruxton, G., & Franks, N. (2002). Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218, 1–11. CrossRefMathSciNetGoogle Scholar
  18. Cui, X., & Potok, T. E. (2005). Document clustering analysis based on hybrid PSO+K-means algorithm. Journal of Computer Sciences, 5, 27–33. Google Scholar
  19. Cui, X., Potok, T. E., & Palathingal, P. (2005). Document clustering using particle swarm optimization. In Proceedings of the IEEE swarm intelligence symposium, SIS 2005 (pp. 185–191). Piscataway: IEEE Press. Google Scholar
  20. Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document clustering analysis. Journal of Systems Architecture, 52, 505–515. CrossRefGoogle Scholar
  21. Dasgupta, D. (Ed.). (1999). Artificial immune systems and their applications. Berlin: Springer. MATHGoogle Scholar
  22. de Castro, L. N., & von Zuben, F. J. (2000). An evolutionary immune network for data clustering. In Proceedings of the Brazilian symposium on neural networks, SBRN 00 (pp. 84–89). Piscataway: IEEE Press. CrossRefGoogle Scholar
  23. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1991). The dynamics of collective sorting: robot-like ants and ant-like robots. In J.-A. Meyer & S. Wilson (Eds.), From animals to animats: proceedings of the first international conference on simulation of adaptive behavior (pp. 356–365). Cambridge: MIT Press. Google Scholar
  24. Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. (1999). Graph drawing. Upper Saddle River: Prentice Hall. MATHCrossRefGoogle Scholar
  25. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. MATHGoogle Scholar
  26. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1), 29–41. CrossRefGoogle Scholar
  27. Ekola, T., Laurikkala, M., Lehto, T., & Koivisto, H. (2004). Network traffic analysis using clustering ants. In Proceedings of the world automation congress, WAC 2004 (Vol. 17, pp. 275–280). Piscataway: IEEE Press. Google Scholar
  28. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In E. Simoudis, J. Han, & U. Fayyad (Eds.), Proceedings of the second international conference on knowledge discovery and data mining (pp. 226–231). Menlo Park: AAAI Press. Google Scholar
  29. Everitt, B., Laindau, S., & Leese, M. (2001). Cluster analysis (4th ed.). London: Edward Arnold. Google Scholar
  30. Folino, G., & Spezzano, G. (2002). An adaptive flocking algorithm for spatial clustering. In J. J. M. Guervós, P. Adamidis, H.-G. Beyer, & J. L. Fernández-Villacañas (Eds.), Lecture notes in computer science : Vol. 2439. Parallel problem solving from nature—PPSN VII (pp. 924–933). Berlin: Springer. Google Scholar
  31. Folino, G., Forestiero, A., & Spezzano, G. (2003a). Discovering clusters in spatial data using swarm intelligence. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, & J. Ziegler (Eds.), Lecture notes in artificial intelligence : Vol. 2801. Advances in artificial life: 7th European conference, ECAL 2003 (pp. 598–605). Berlin: Springer. Google Scholar
  32. Folino, G., Forestiero, A., & Spezzano, G. (2003b). Swarming agents for discovering clusters in spatial data. In Proceedings of the international symposium on parallel and distributed computing, ISPDC 03 (pp. 72–79). Piscataway: IEEE Press. CrossRefGoogle Scholar
  33. Gansner, E., Koren, Y., & North, S. (2004). Graph drawing by stress majorization. In J. Pach (Ed.), Lecture notes in computer science : Vol. 3383. Graph drawing: 12th international symposium, GD 2004 (pp. 239–250). Berlin: Springer. Google Scholar
  34. Garey, M., & Johnson, D. (1979). Computers and intractability; a guide to the theory of NP-completeness. New York: Freeman. MATHGoogle Scholar
  35. Gu, Y., & Hall, L. O. (2006). Kernel based fuzzy ant clustering with partition validity. In Proceedings of the IEEE international conference on fuzzy systems (pp. 263–267). Piscataway: IEEE Press. Google Scholar
  36. Handl, J., & Knowles, J. (2007). An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation, 11(1), 56–76. CrossRefGoogle Scholar
  37. Handl, J., & Meyer, B. (2002). Improved ant-based clustering and sorting in a document retrieval interface. In J. J. Merelo, P. Adamidis, & H.-G. Beyer (Eds.), Lecture notes in computer science : Vol. 2439. Parallel problem solving from nature—PPSN VII (pp. 913–923). Berlin: Springer. Google Scholar
  38. Handl, J., Knowles, J., & Kell, D. B. (2005). Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15), 3201–3212. CrossRefGoogle Scholar
  39. Handl, J., Knowles, J., & Dorigo, M. (2006). Ant-based clustering and topographic mapping. Artificial Life, 12(1), 35–61. CrossRefGoogle Scholar
  40. Hartmann, V. (2005). Evolving agent swarms for clustering and sorting. In H.-G. Beyer (Ed.), Proceedings of the genetic and evolutionary computation conference (pp. 217–224). New York: ACM. CrossRefGoogle Scholar
  41. Hoe, K., Lai, W., & Tai, T. (2002). Homogeneous ants for web document similarity modeling and categorization. In M. Dorigo & G. Di (Eds.), Lecture notes in computer science : Vol. 2463. Ant algorithms: third international workshop, ANTS 2002 (pp. 256–261). Berlin: Springer. Google Scholar
  42. Jain, A., & Dubes, R. (1988). Algorithms for clustering data. Englewood Cliffs: Prentice Hall. MATHGoogle Scholar
  43. Jain, A., Murty, M., & Flynn, P. (1999a). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323. CrossRefGoogle Scholar
  44. Jain, A., Murty, M., & Flynn, P. J. (1999b). Data clustering: a review. ACM Computing Surveys, 31, 264–323. CrossRefGoogle Scholar
  45. Kanade, P. M., & Hall, L. O. (2003). Fuzzy ants as a clustering concept. In NAFIPS 2003: 22nd international conference of the North American fuzzy information processing society (pp. 227–232). Piscataway: IEEE Press. CrossRefGoogle Scholar
  46. Kanade, P. M., & Hall, L. O. (2004). Fuzzy ant clustering by centroid positioning. In Proceedings of the IEEE international conference on fuzzy systems (Vol. 1, pp. 371–376). Piscataway: IEEE Press. Google Scholar
  47. Kannan, R., Vempala, S., & Vetta, A. (2004). On clusterings: good, bad and spectral. Journal of the ACM, 51(3), 497–515. CrossRefMathSciNetGoogle Scholar
  48. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2000). The analysis of a simple k-means clustering algorithm. In Symposium on computational geometry (pp. 100–109). New York: ACM. Google Scholar
  49. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international joint conference on neural networks, IJCNN 95 (pp. 1942–1948). Piscataway: IEEE Press. Google Scholar
  50. Kohonen, T. (1997). Self-organizing maps. Berlin: Springer. MATHGoogle Scholar
  51. Kuntz, P., & Snyers, D. (1994). Emergent colonization and graph partitioning. In D. Cliff, P. Husbands, J.-A. Meyer, & S.W. Wilson (Eds.), From animals to animats 3: proceedings of the third international conference on simulation of adaptive behavior (pp. 494–500). Cambridge: MIT Press. Google Scholar
  52. Kuntz, P., & Snyers, D. (1999). New results on an ant-based heuristic for highlighting the organization of large graphs. In Proceedings of the 1999 congress on evolutionary computation, CEC 99 (pp. 1451–1458). Piscataway: IEEE Press. CrossRefGoogle Scholar
  53. Kuntz, P., Snyers, D., & Layzell, P. (1998). A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5(3), 327–351. CrossRefGoogle Scholar
  54. Labroche, N., Monmarché, N., & Venturini, G. (2003). Antclust: ant clustering and web usage mining. In E. Cantu-Paz (Ed.), Lecture notes in computer science : Vol. 2723. Genetic and evolutionary computation, GECOO 2003 (pp. 25–36). Berlin: Springer. CrossRefGoogle Scholar
  55. Labroche, N., Guinot, C., & Venturini, G. (2004). Fast unsupervised clustering with artificial ants. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, et al. (Eds.), Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature, PPSN VIII (pp. 1143–1152). Berlin: Springer. Google Scholar
  56. Langham, E. (2005). Emergent restructuring of resources in ant colonies: a swarm-based approach to partitioning. In M. Ali & F. Esposito (Eds.), Lecture notes in artificial intelligence : Vol. 3533. Innovations in applied artificial intelligence: 18th international conference on industrial and engineering applications of artificial intelligence and expert systems (pp. 638–647). Berlin: Springer. Google Scholar
  57. Larrañaga, P., & Lozano, J. (2002). Genetic algorithms and evolutionary computation: Vol. 2. Estimation of distribution algorithms: a new tool for evolutionary computation. Boston: Kluwer Academic. Google Scholar
  58. Li, Q., Shi, Z., Shi, J., & Shi, Z. (2005). Swarm intelligence clustering algorithm based on attractor. In L. Wang, K. Chen, & Y.-S. Ong (Eds.), Lecture notes in computer science : Vol. 3612. Advances in natural computation, first international conference, ICNC 2005 (pp. 496–504). Berlin: Springer. Google Scholar
  59. Lumer, E., & Faieta, B. (1994). Diversity and adaptation in populations of clustering ants. In D. Cliff, P. Husbands, J.-A. Meyer, & S. W. Wilson (Eds.), From animals to animats 3: proceedings of the third international conference on simulation of adaptive behavior (pp. 501–508). Cambridge: MIT Press. Google Scholar
  60. Macgill, J. (2000). Using flocks to drive a geographic analysis machine. In M. Bedau, J. S. McCaskill, N. H. Packard, S. Rasmussen, J. McCaskill, & N. Packard (Eds.), Artificial life VII: proceedings of the seventh international conference on artificial life (pp. 446–453). Cambridge: MIT Press. Google Scholar
  61. MacQueen, L. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281–297). Berkeley: University of California Press. Google Scholar
  62. Melhuish, C., Sendova-Franks, A. B., & Scholes, S. (2006). Ant inspired sorting by robots: the importance of initial clustering. Journal of the Royal Society Interface, 3(7), 235–242. CrossRefGoogle Scholar
  63. Merkle, D., Middendorf, M., & Scheidler, A. (2004). Decentralized packet clustering in networks. In Proceedings of the 18th international parallel and distributed processing symposium, IPDPS 2004 (pp. 163–170). Piscataway: IEEE Press. CrossRefGoogle Scholar
  64. Moere, A. V., & Clayden, J. J. (2005). Cellular ants: combining ant-based clustering with cellular automata. In 17th IEEE international conference on tools with artificial intelligence, ICTAI 2005 (pp. 177–184). Piscataway: IEEE Press. CrossRefGoogle Scholar
  65. Monmarché, N. (2000). Algorithmes de fourmis artificielles: applications à la classification et à l’optimisation. PhD thesis, Laboratoire d’Informatique, Université de Tours, France. Google Scholar
  66. Monmarché, N., Slimane, M., & Venturini, G. (1999). On improving clustering in numerical databases with artificial ants. In D. Floreano, J.-D. Nicoud, & F. Mondada (Eds.), Lecture notes in artificial intelligence : Vol. 1674. Advances in artificial life: 5th European conference, ECAL 99 (pp. 626–635). Berlin: Springer. Google Scholar
  67. Monmarché, N., Ramat, E., Desbarats, L., & Venturini, G. (2000). Probabilistic search with genetic algorithms and ant colonies. In A. S. Wu (Ed.), Workshop on optimization by building and using probabilistic models, GECCO 2000 (pp. 209–211). Google Scholar
  68. Montes de Oca, M. A., Garrido, L., & Aguirre, J. L. (2005). Effects of inter-agent communication in ant-based clustering algorithms: a case study on communication policies in swarm systems. In A. Gelbukh & H. Terashima (Eds.), Lecture notes in artificial intelligence : Vol. 3789. MICAI 2005: advances in artificial intelligence: 4th Mexican international conference on artificial intelligence (pp. 254–263). Berlin: Springer. Google Scholar
  69. Mühlenbein, H. (1998). The equation for response to selection and its use for prediction. Evolutionary Computation, 5, 303–346. Google Scholar
  70. Ng, A. Y., Jordan, M., & Weiss, Y. (2001). On spectral clustering: analysis and an algorithm. In T. Diettrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems 14: proceedings of the 2001 neural information processing systems (NIPS) conference (pp. 849–856). Cambridge: MIT Press. Google Scholar
  71. Omran, M., Salman, A., & Engelbrecht, A. (2002). Image classification using particle swarm optimization. In L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim, & X. Yao (Eds.), Proceedings of the fourth Asia-pacific conference on simulated evolution and learning, SEAL’02 (pp. 370–374). Piscataway: IEEE Press. Google Scholar
  72. Openshaw, S., & Macgill, J. (1998). The use of flocks to drive a geographical analysis machine. In R. J. Abrahart (Ed.), GeoComputation 98, proceedings of the 3rd international conference on geocomputation. GeoComputation CD-ROM. Google Scholar
  73. Parpinelli, S., Lopes, S., & Freitas, A. (2002). Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 6, 321–332. CrossRefGoogle Scholar
  74. Parpinelli, S., Lopes, S., & Freitas, A. (2005). Classification-rule discovery with an ant colony algorithm. In Proceedings of the IEEE/WIC international conference on intelligent agent technology (pp. 420–424). Piscataway: IEEE Press. Google Scholar
  75. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization—an overview. Swarm Intelligence, 1(1), 33–57. CrossRefGoogle Scholar
  76. Proctor, G., & Winter, C. (1998). Information flocking: data visualization in virtual worlds using emergent behaviours. In J.-C. Heudin (Ed.), Lecture notes in computer science : Vol. 1434. Proceedings of the international conference on virtual worlds (pp. 168–176). Berlin: Springer. CrossRefGoogle Scholar
  77. Ramos, V., & Abraham, A. (2005). Antids: self-organized ant-based clustering model for intrusion detection system. In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, & Y. Ohsawa (Eds.), Springer engineering series : Vol. 29. Soft computing as transdisciplinary science and technology: proceedings of the fourth IEEE international workshop WSTST 05 (pp. 977–986). Berlin: Springer. Google Scholar
  78. Ramos, V., & Merelo, J. (2002). Self-organized stigmergic document maps: environments as a mechanism for context learning. In Proceedings of the first Spanish conference on evolutionary and bio-inspired algorithms (pp. 284–293). Mérida: Centro Univ. Mérida. Google Scholar
  79. Rayward-Smith, V. J. (2005). Metaheuristics for clustering in KDD. In Proceedings of the 2005 IEEE congress on evolutionary computation (Vol. 3, pp. 2380–2387). Piscataway: IEEE Press. CrossRefGoogle Scholar
  80. Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model. Computer Graphics, 21(4), 25–34. CrossRefMathSciNetGoogle Scholar
  81. Roure, J., Larrañaga, P., & Sangüesa, R. (2002). An empirical comparison between k-means, GAs and EDAs in partitional clustering. In P. Larrañaga & J. A. Lozan (Eds.), Estimation of distribution algorithms, Chap. 17. Norwell: Kluwer Academic. Google Scholar
  82. Runkler, T. A. (2005). Ant colony optimization of clustering models. International Journal of Intelligent Systems, 20(12), 1233–1251. MATHCrossRefGoogle Scholar
  83. Saatchi, S., & Hung, C. C. (2005). Hybridization of the ant colony optimization with the k-means algorithm for clustering. In Lecture notes in computer science : Vol. 3540. Image analysis. Berlin: Springer. Google Scholar
  84. Schockaert, S., Cock, M. D., Cornelis, C., & Kerre, E. E. (2004a). Efficient clustering with fuzzy ants. In D. Ruan, P. D’hondt, M. D. Cock, M. Nachtegael, & E. E. Kerre (Eds.), Applied computational intelligence, proceedings of the 6th international FLINS conference (pp. 195–200). River Edge: World Scientific. CrossRefGoogle Scholar
  85. Schockaert, S., Cock, M. D., Cornelis, C., & Kerre, E. E. (2004b). Fuzzy ant based clustering. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, & T. Stützle (Eds.), Lecture notes in computer science : Vol. 3172. Ant colony optimization and swarm intelligence, 4th international workshop, ANTS 2004 (pp. 342–349). Berlin: Springer. Google Scholar
  86. Scholes, S., & Wilson, M. (2004). Comparisons in evolution and engineering: the collective intelligence of sorting. Adaptive Behavior, 12(3–4), 147–159. CrossRefGoogle Scholar
  87. Sendova-Franks, A. B., Scholes, S. R., Franks, N. R., & Melhuish, C. (2004). Brood sorting by ants: two phases and differential diffusion. Animal Behaviour, 68, 1095–1106. CrossRefGoogle Scholar
  88. Theoridis, S., & Koutrumbas, K. (2006). Pattern recognition (3rd ed.). New York: Academic Press. Google Scholar
  89. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 411–423. MATHCrossRefMathSciNetGoogle Scholar
  90. Timmis, J., & Neal, M. (2001). A resource limited artificial immune system for data analysis. Knowledge-based Systems, 14, 121–130. CrossRefGoogle Scholar
  91. Timmis, J., Neal, M., & Hunt, J. (1999). Data analysis using artificial immune systems, cluster analysis and Kohonen networks: some comparisons. In Proceedings of the IEEE international conference on systems, man, and cybernetics (Vol. 3, pp. 922–927). Piscataway: IEEE Press. Google Scholar
  92. Timmis, J., Neal, M., & Hunt, J. (2000). An artificial immune systems for data analysis. BioSystems, 55, 143–150. CrossRefGoogle Scholar
  93. Tsai, C.-F., Wu, H.-C., & Tsai, C.-W. (2002). A new clustering approach for data mining in large databases. In Proceedings of the international symposium on parallel architectures, algorithms and networks (pp. 278–283). Piscataway: IEEE Press. Google Scholar
  94. Tsang, W., & Kwong, S. (2005). Unsupervised anomaly intrusion detection using ant colony clustering model. In A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, & Y. Ohsawa (Eds.), Springer engineering series : Vol. 29. Soft computing as transdisciplinary science and technology: proceedings of the fourth IEEE international workshop, WSTST 05 (pp. 223–232). Berlin: Springer. Google Scholar
  95. van der Merwe, D., & Engelbrecht, A. (2003). Data clustering using particle swarm optimization. In Proceedings of the 2003 congress on evolutionary computation (pp. 215–220). Piscataway: IEEE Press. CrossRefGoogle Scholar
  96. Vande Moere, A. (2004). Information flocking: time-varying data visualization using boid behaviors. In Proceedings of the eighth international conference on information visualization (pp. 409–414). Piscataway: IEEE Press. CrossRefGoogle Scholar
  97. Vik, A. H. (2005). Evolving annular sorting in ant-like agents. In M. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture notes in artificial intelligence : Vol. 3630. Advances in artificial life: 8th European conference, ECAL 2005 (pp. 594–603). Berlin: Springer. Google Scholar
  98. Vizine, A. L., de Castro, L. N., & Gudwin, R. R. (2005a). Text document classification using swarm intelligence. In International conference on the integration of knowledge intensive multi-agent systems (pp. 134–139). Piscataway: IEEE Press. CrossRefGoogle Scholar
  99. Vizine, A. L., de Castro, L. N., Hruschka, E. R., & Gudwin, R. R. (2005b). Towards improving clustering ants: an adaptive ant clustering algorithm. Informatica, 29, 143–154. MATHGoogle Scholar
  100. Vorhees, E. (1985). The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval. PhD thesis, Department of Computer Science, Cornell University, Ithaca, NY. Google Scholar
  101. Zlochin, M., Birattari, M., Meuleau, N., & Dorigo, M. (2004). Model-based search for combinatorial optimization: a critical survey. Annals of Operations Research, 131, 373–395. MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUK
  2. 2.Clayton School of ITMonash UniversityMelbourneAustralia

Personalised recommendations