Swarm Intelligence

, Volume 1, Issue 2, pp 115–134 | Cite as

An ant colony optimization approach to flexible protein–ligand docking

Article

Abstract

The prediction of the complex structure of a small ligand with a protein, the so-called protein–ligand docking problem, is a central part of the rational drug design process. For this purpose, we introduce the docking algorithm PLANTS (Protein–Ligand ANT System), which is based on ant colony optimization, one of the most successful swarm intelligence techniques. We study the effectiveness of PLANTS for several parameter settings and present a direct comparison of PLANTS’s performance to a state-of-the-art program called GOLD, which is based on a genetic algorithm and frequently used in the pharmaceutical industry for this task. Last but not least, we also show that PLANTS can make effective use of protein flexibility giving example results on cross-docking and virtual screening experiments for protein kinase A.

Keywords

Ant colony optimization Protein–ligand docking Cross-docking Virtual screening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abagyan, R., Totrov, M., & Kuznetsov, D. (1994). ICM—A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry, 15(5), 488–506. CrossRefGoogle Scholar
  2. Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R., & Eldridge, M. D. (1997). Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins, 33, 367–382. CrossRefGoogle Scholar
  3. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. CrossRefGoogle Scholar
  4. Clark, M., Cramer III, R. D., & van Opdenhosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10, 982–1012. CrossRefGoogle Scholar
  5. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. MATHGoogle Scholar
  6. Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme. Chemische Berichte, 27, 2985–2993. Google Scholar
  7. Gehlhaar, D. K., Verkhivker, G. M., Rejto, P. A., Sherman, C. J., Fogel, D. B., Fogel, L. J., & Freer, S. T. (1995). Molecular recognition of the inhibitor AG-1243 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chemistry and Biology, 2, 317–324. CrossRefGoogle Scholar
  8. Halgren, T. A. (1996). Merck molecular force field, I: basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5–6), 490–519. CrossRefGoogle Scholar
  9. Irwin, J. J., & Shoichet, B. K. (2005). ZINC—A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–82. CrossRefGoogle Scholar
  10. Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. D. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267, 727–748. CrossRefGoogle Scholar
  11. Kellenberger, E., Rodrigo, J., Muller, P., & Rognan, D. (2004). Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins, 57(2), 225–242. CrossRefGoogle Scholar
  12. Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565. CrossRefGoogle Scholar
  13. Koshland, D. E. (1973). Protein shape and biological control. Scientific American, 229(4), 52–64. CrossRefGoogle Scholar
  14. Korb, O., Stützle, T., & Exner, T. E. (2006). PLANTS: Application of Ant Colony Optimization to Structure-Based Drug Design. In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, & T. Stützle (Eds.), Lecture Notes in Computer Science : Vol. 4150. Ant colony optimization and swarm intelligence, 5th international workshop, ANTS 2006 (pp. 247–258). Berlin: Springer. CrossRefGoogle Scholar
  15. McMartin, C., & Bohacek, R. S. (1997). QXP: powerful, rapid computer algorithms for structure-based drug design. Journal of Computer-Aided Molecular Design, 11(4), 333–344. CrossRefGoogle Scholar
  16. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662. CrossRefGoogle Scholar
  17. Müller, G. (2003). Medicinal chemistry of target family-directed masterkeys. Drug Discovery Today, 8(15), 681–691. CrossRefGoogle Scholar
  18. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313. MATHGoogle Scholar
  19. Nissink, J. W. M., Murray, C., Hartshorn, M., Verdonk, M. L., Cole, J. C., & Taylor, R. (2002). A new test set for validating predictions of protein–ligand interaction. Proteins, 49(4), 457–471. CrossRefGoogle Scholar
  20. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992). Numerical recipes in C: the art of scientific computing. Cambridge: Cambridge University Press. Google Scholar
  21. Stützle, T., & Hoos, H. H. (2000). \(\mathcal{MAX}\)\(\mathcal{MIN}\) ant system. Future Generation Computer Systems, 16(8), 889–914. CrossRefGoogle Scholar
  22. Taylor, R. D., Jewsbury, P. J., & Essex, J. W. (2002). A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design, 16, 151–166. CrossRefGoogle Scholar
  23. Triballeau, N., Acher, F., Brabet, I., Pin, J.-P., & Bertrand, H.-O. (2005). Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. Journal of Medicinal Chemistry, 48(7), 2534–2547. CrossRefGoogle Scholar
  24. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using GOLD. Proteins, 52, 609–623. CrossRefGoogle Scholar
  25. Verdonk, M. L., Berdini, V., Hartshorn, M. J., Mooij, W. T. M., Murray, C. W., Taylor, R. D., & Watson, P. (2004). Virtual screening using protein–ligand docking: avoiding artificial enrichment. Journal of Chemical Information and Modeling, 44(3), 793–806. CrossRefGoogle Scholar
  26. Verkhivker, G. M. (2004). Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations. Journal of Molecular Graphics and Modelling, 22, 335–348. CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Oliver Korb
    • 1
  • Thomas Stützle
    • 2
  • Thomas E. Exner
    • 1
  1. 1.Theoretische Chemische DynamikUniversität KonstanzKonstanzGermany
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations