Swarm Intelligence

, Volume 1, Issue 2, pp 135–151 | Cite as

Ant colony optimization for real-world vehicle routing problems

From theory to applications
  • A. E. Rizzoli
  • R. Montemanni
  • E. Lucibello
  • L. M. Gambardella
Article

Abstract

Ant colony optimization (ACO) is a metaheuristic for combinatorial optimization problems. In this paper we report on its successful application to the vehicle routing problem (VRP). First, we introduce the VRP and some of its variants, such as the VRP with time windows, the time dependent VRP, the VRP with pickup and delivery, and the dynamic VRP. These variants have been formulated in order to bring the VRP closer to the kind of situations encountered in the real-world.

Then, we introduce the basic principles of ant colony optimization, and we briefly present its application to the solution of the VRP and of its variants.

Last, we discuss the applications of ACO to a number of real-world problems: a VRP with time windows for a major supermarket chain in Switzerland; a VRP with pickup and delivery for a leading distribution company in Italy; a time dependent VRP for freight distribution in the city of Padua, Italy, where the travel times depend on the time of the day; and an on-line VRP in the city of Lugano, Switzerland, where customers’ orders arrive during the delivery process.

Keywords

Ant colony optimization Ant colony system Vehicle routing problem Dynamic VRP Rich VRP Real-world VRP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksoy, Y., & Derbez, A. (2003). Software survey: supply chain management. OR/MS Today, 30(3), 1–13. Google Scholar
  2. Albritton, M. D., & McMullen, P. R. (2007). Optimal product design using a colony of virtual ants. European Journal of Operational Research, 176(1), 498–520. MATHCrossRefGoogle Scholar
  3. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., & Schiavinotto, T. (2004). Metaheuristics for the vehicle routing problem with stochastic demands. X. Yao, et al. (Eds.), Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature—PPSN VIII (pp. 450–460). Berlin: Springer. Google Scholar
  4. Blum, C. (2005). Beam-ACO—Hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers and Operations Research, 32(6), 1565–1591. CrossRefGoogle Scholar
  5. Blum, C., & Dorigo, M. (2004). The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 34(2), 1161–1172. CrossRefGoogle Scholar
  6. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308. CrossRefGoogle Scholar
  7. Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle routing problem with time windows. INFORMS Journal on Computing, 15(4), 347–368. CrossRefMathSciNetGoogle Scholar
  8. Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999). A new rank-based version of the ant system: a computational study. Central European Journal of Operations Research, 7(1), 25–38. MATHMathSciNetGoogle Scholar
  9. Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2000). VRP with pickup and delivery. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 225–242). Philadelphia: SIAM. Google Scholar
  10. Donati, A. V., Montemanni, R., Casagrande, N., Rizzoli, A. E., & Gambardella, L. M. (2007, in press). Time dependent vehicle routing problem with a multi ant colony system. European Journal of Operational Research. Google Scholar
  11. Dorigo, M. (1992). Optimization, learning and natural algorithms. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy. Google Scholar
  12. Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66. CrossRefGoogle Scholar
  13. Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Cambridge: MIT Press. MATHGoogle Scholar
  14. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, 26(1), 29–41. CrossRefGoogle Scholar
  15. Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5, 137–172. CrossRefGoogle Scholar
  16. Gambardella, L. M., Rizzoli, A. E., & Zaffalon, M. (1998). Simulation and planning of an intermodal container terminal. Simulation, 71(2), 107–116. CrossRefGoogle Scholar
  17. Gambardella, L. M., Taillard, É., & Agazzi, G. (1999). MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. In D. Corne, M. Dorigo & F. Glover (Eds.), New ideas in optimization (pp. 63–76). London: McGraw–Hill. Google Scholar
  18. Gendreau, M., & Potvin, J.-Y. (1998). Dynamic vehicle routing and dispatching. In T. G. Crainic & G. Laporte (Eds.), Fleet management and logistic (pp. 115–226). Berlin: Springer. Google Scholar
  19. Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40(10), 1276–1290. MATHGoogle Scholar
  20. Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research, 88(1), 3–12. MATHCrossRefGoogle Scholar
  21. Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic. MATHGoogle Scholar
  22. Guntsch, M., & Middendorf, M. (2001). Pheromone modification strategies for ant algorithms applied to dynamic TSP. In E. J. W. Boers et al. (Eds.), Lecture notes in computer science : Vol. 2037. Applications of evolutionary computing: EvoWorkshops 2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM (pp. 213–222), Como, Italy, 18–20 April 2001. Berlin: Springer. Google Scholar
  23. Hartl, R. F., Hasle, G., & Janssens, G. K. (2006). Special issue on rich vehicle routing problems: editorial. Central European Journal of Operations Research, 14(2), 103–104. CrossRefMATHGoogle Scholar
  24. Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 144(2), 379–396. MATHCrossRefGoogle Scholar
  25. Kallehauge, B., Larsen, J., & Madsen, O. B. G. (2006). Lagrangian duality applied to the vehicle routing problem with time windows. Computers and Operations Research, 33(5), 1464–1487. MATHCrossRefMathSciNetGoogle Scholar
  26. Kilby, P., Prosser, P., & Shaw, P. (1999). Guided local search for the vehicle routing problem. In S. Voss, S. Martello, I. H. Osman & C. Roucairol (Eds.), Meta-heuristics: advances and trends in local search paradigms for optimization (pp. 473–486). Boston: Kluwer Academic. Google Scholar
  27. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. CrossRefMathSciNetGoogle Scholar
  28. Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient variable neighborhood search heuristic for very large scale vehicle routing problems. Computers and Operations Research, 34(9), 2743–2757. MATHCrossRefGoogle Scholar
  29. Labbé, M., Laporte, G., & Mercure, H. (1991). Capacitated vehicle routing on trees. Operations Research, 39(4), 616–622. MATHGoogle Scholar
  30. Laporte, G., & Louveaux, F. V. (1998). Solving stochastic routing problems with the integer L-shaped method. In T. G. Crainic & G. Laporte (Eds.), Fleet management and logistics (pp. 159–167). Boston: Kluwer Academic. Google Scholar
  31. Li, Y., & Chan Hilton, A. B. (2007). Optimal groundwater monitoring design using an ant colony optimization paradigm. Environmental Modelling and Software, 22(1), 110–116. CrossRefGoogle Scholar
  32. Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: new test problems, algorithms, and results. Computers and Operations Research, 32(5), 1165–1179. MATHGoogle Scholar
  33. Lourenço, H. R., Martin, O., & Stützle, T. (2003). Iterated local search. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 321–353). Boston: Kluwer Academic. Google Scholar
  34. Maniezzo, V., & Carbonaro, A. (2000). ANTS heuristic for the frequency assignment problem. Future Generation Computer Systems, 16(8), 927–935. CrossRefGoogle Scholar
  35. Mester, D., & Bräysy, O. (2005). Active guided evolution strategies for the large scale vehicle routing problem with time windows. Computers & Operations Research, 32(6), 1593–1614. CrossRefGoogle Scholar
  36. Montemanni, R., Gambardella, L. M., Rizzoli, A. E., & Donati, A. V. (2005). Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization, 10, 327–343. MATHCrossRefMathSciNetGoogle Scholar
  37. Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 41, 421–451. MATHCrossRefGoogle Scholar
  38. Potvin, J.-Y., Xu, Y., & Benyahia, I. (2006). Vehicle routing and scheduling with dynamic travel times. Computers and Operations Research, 33(4), 1129–1137. MATHCrossRefGoogle Scholar
  39. Psaraftis, H. (1995). Dynamic vehicle routing: status and prospects. Annals of Operations Research, 61, 143–164. MATHCrossRefGoogle Scholar
  40. Psaraftis, H. (1988). Dynamic vehicle routing problems. In B. L. Golden & A. A. Assad (Eds.), Vehicle routing: methods and studies (pp. 223–248). Amsterdam: North-Holland. Google Scholar
  41. Reimann, M., Doerner, K., & Hartl, R. F. (2002). A savings based ant system for the vehicle routing problem. In W. B. Langdon et al. (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO-2002) (pp. 1317–1325). San Francisco: Kaufmann. Google Scholar
  42. Reimann, M., Doerner, K., & Hartl, R. F. (2003). Analyzing a unified ant system for the VRP and some of its variants. In G. Raidl et al. (Eds.), Lecture notes in computer science : Vol. 2611. Applications of evolutionary computing: EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM (pp. 300–310), Essex, UK, 14–16 April 2003. Berlin: Springer. Google Scholar
  43. Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: savings based ants divide and conquer the vehicle routing problem. Computers and Operations Research, 31(4), 563–591. MATHCrossRefGoogle Scholar
  44. Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Boston: Kluwer Academic. CrossRefGoogle Scholar
  45. Savelsbergh, M. W. P. (1985). Local search in routing problems with time windows. Annals of Operations Research, 4, 285–305. CrossRefMathSciNetGoogle Scholar
  46. Stützle, T., & Hoos, H. H. (2000). MAX-MIN ant-system. Future Generation Computer Systems, 16(8), 889–914. CrossRefGoogle Scholar
  47. Taillard, È. D., Badeau, E. P., Gendreau, M., Guertin, F., & Potvin, J.-Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 31(2), 170–186. MATHCrossRefGoogle Scholar
  48. Toth, P., & Vigo, D. (2001a). Branch-and-bound algorithms for the capacitated VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 29–51). Philadelphia: SIAM. Google Scholar
  49. Toth, P., & Vigo, D. (2001b). An overview of vehicle routing problems. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 1–26). Philadelphia: SIAM. Google Scholar
  50. Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the vehicle routing problem. INFORMS Journal on Computing, 15(4), 333–346. CrossRefMathSciNetGoogle Scholar
  51. Van Breedam, A. (1996). An analysis of the effect of local improvement operators in genetic algorithms and simulated annealing for the vehicle routing problem. RUCA Working Paper 96/14, University of Antwerp, Belgium, 1996. Google Scholar
  52. Zecchin, A. C., Maier, H. R., Simpson, A. R., Leonard, M., & Nixon, J. B. (2007). Ant colony optimization applied to water distribution system design: comparative study of five algorithms. Journal of Water Resources Planning and Management, 133(1), 87–92. CrossRefGoogle Scholar
  53. Zeimpekis, V., Tarantilis, C. D., Giaglis, G. M., & Minis, I. (2007). Dynamic fleet management—concepts, systems, algorithms & case studies. Berlin: Springer. MATHGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • A. E. Rizzoli
    • 1
  • R. Montemanni
    • 1
  • E. Lucibello
    • 2
  • L. M. Gambardella
    • 1
  1. 1.Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)MannoSwitzerland
  2. 2.AntOptimaLuganoSwitzerland

Personalised recommendations