Swarm Intelligence

, Volume 1, Issue 1, pp 3–31 | Cite as

The biological principles of swarm intelligence



The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. From the routing of traffic in telecommunication networks to the design of control algorithms for groups of autonomous robots, the collective behaviors of these animals have inspired many of the foundational works in this emerging research field. For the first issue of this journal dedicated to swarm intelligence, we review the main biological principles that underlie the organization of insects’ colonies. We begin with some reminders about the decentralized nature of such systems and we describe the underlying mechanisms of complex collective behaviors of social insects, from the concept of stigmergy to the theory of self-organization in biological systems. We emphasize in particular the role of interactions and the importance of bifurcations that appear in the collective output of the colony when some of the system’s parameters change. We then propose to categorize the collective behaviors displayed by insect colonies according to four functions that emerge at the level of the colony and that organize its global behavior. Finally, we address the role of modulations of individual behaviors by disturbances (either environmental or internal to the colony) in the overall flexibility of insect colonies. We conclude that future studies about self-organized biological behaviors should investigate such modulations to better understand how insect colonies adapt to uncertain worlds.


Swarm intelligence Social insects Stigmergy Self-organization collective behaviors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C., & Franks, N. R. (2001). Teams in animal societies. Behavioral Ecology, 12(5), 534–540. Google Scholar
  2. Anderson, C., Franks, N. R., & McShea, D. W. (2001). The complexity and hierarchical structure of tasks in insect societies. Animal Behaviour, 62(4), 643–651. Google Scholar
  3. Ataya, H., & Lenoir, A. (1984). Le comportement nécrophorique chez la fourmi Lasius niger L. Insectes Sociaux, 31, 20–33. Google Scholar
  4. Beckers, R., Deneubourg, J. L., Goss, S., & Pasteels, J. M. (1990). Collective decision making through food recruitment. Insectes Sociaux, 37, 258–267. Google Scholar
  5. Beckers, R., Deneubourg, J. L., & Goss, S. (1992). Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insectes Sociaux, 39, 59–72. Google Scholar
  6. Beckers, R., Deneubourg, J. L., & Goss, S. (1993). Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Journal of Insect Behavior, 6, 751–759. Google Scholar
  7. Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Cziròk, A., & Vicsek, T. (1994). Generic modelling of cooperative growth patterns in bacterial colonies. Nature, 368(6466), 46–49. Google Scholar
  8. Ben-Jacob, E., Cohen, I., & Levine, H. (2000). Cooperative self-organization of microorganisms. Advances in Physics, 49, 395–554. Google Scholar
  9. Beshers, S. N., & Fewell, J. H. (2001). Models of division of labor in social insects. Annual Review of Entomology, 46(1), 413–440. Google Scholar
  10. Bonabeau, E. (1996). Marginally stable swarms are flexible and efficient. Journal de Physique I, 6, 309–324. Google Scholar
  11. Bonabeau, E., & Theraulaz, G. (2000). Swarm smarts. Scientific American, 282(3), 72–79. CrossRefGoogle Scholar
  12. Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology and Evolution, 12(5), 188–193. Google Scholar
  13. Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (1998). Fixed response threshold and the regulation of division of labor in insect societies. Bulletin of Mathematical Biology, 60, 753–807. MATHGoogle Scholar
  14. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence—from natural to artificial systems. Oxford: Oxford University Press. MATHGoogle Scholar
  15. Bruinsma, O. H. (1979). An analysis of building behaviour of the termite Macrotemes subhyalinus. Lanbouwhogeschool te Wageningen, The Netherlands. Google Scholar
  16. Büchner, L. (1881). La vie psychique des bêtes. Paris: Reinwald. Google Scholar
  17. Buhl, J., Gautrais, J., Solé, R. V., Kuntz, P., Valverde, S., Deneubourg, J. L., & Theraulaz, G. (2004). Efficiency and robustness in ant networks of galleries. The European Physical Journal B—Condensed Matter and Complex Systems, 42(1), 123–129. Google Scholar
  18. Buhl, J., Deneubourg, J. L., Grimal, A., & Theraulaz, G. (2005). Self-organized digging activity in ant colonies. Behavioral Ecology and Sociobiology, 58(1), 9–17. Google Scholar
  19. Buhl, J., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., & Simpson, S. J. (2006). From disorder to order in marching locusts. Science, 312(5778), 1402–1406. Google Scholar
  20. Burd, M. (2006). Ecological consequences of traffic organisation in ant societies. Physica A: Statistical and Theoretical Physics, 372(1), 124–131. Google Scholar
  21. Camazine, S., & Sneyd, J. (1991). A model of collective nectar source selection by honey bees: Self-organization through simple rules. Journal of Theoretical Biology, 149(4), 547–571. Google Scholar
  22. Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press. Google Scholar
  23. Campos, M., Bonabeau, E., Theraulaz, G., & Deneubourg, J. L. (2000). Dynamic scheduling and division of labor in social insects. Adaptive Behavior, 8(2), 83–95. Google Scholar
  24. Chauvin, R. (1968). Sur le transport collectif des proies par Formica polyctena. Insectes Sociaux, 15, 193–200. Google Scholar
  25. Chauvin, R. (1971). Les lois de l’ergonomie chez les fourmis au cours du transport d’objets. Comptes Rendus de l’Académie des Sciences de Paris D, 273, 1862–1865. Google Scholar
  26. Couzin, I. D., & Franks, N. R. (2003). Self-organized lane formation and optimized traffic flow in army ants. Proceedings of the Royal Society B Biological Sciences, 270, 139–146. Google Scholar
  27. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-making in animal groups on the move. Nature, 433(7025), 513–516. Google Scholar
  28. Crichton, M. (2002). Prey. New York: HarperCollins. Google Scholar
  29. Dambach, M., & Goehlen, B. (1999). Aggregation density and longevity correlate with humidity in first instar nymphs of the cockroach (Blattella germanica L., Dictyoptera). Journal of Insect Physiology, 45, 423–429. Google Scholar
  30. Deneubourg, J. L., & Goss, S. (1989). Collective patterns and decision making. Ethology Ecology and Evolution, 1, 295–311. Google Scholar
  31. Deneubourg, J. L., Pasteels, J. M., & Verhaege, J. C. (1983). Probabilistic behaviour in ants: a strategy of errors? Journal of Theoretical Biology, 105, 259–271. Google Scholar
  32. Deneubourg, J. L., Aron, S., Goss, S. A. P. J. M., & Duerinck, G. (1986). Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants. Physica D, 22, 176–186. MathSciNetGoogle Scholar
  33. Deneubourg, J. L., Goss, S., Pasteels, J. M., Fresneau, D., & Lachaud, J. P. (1987). Self-organization mechanisms in ant societies (II): learning in foraging and division of labor. In Proceedings of the from individual to collective behavior in social insects conference (pp. 177–196). Basel: Birkhäuser. Google Scholar
  34. Deneubourg, J. L., Goss, S., Franks, N. R., Sendova-Franks, A. B., Detrain, C., & Chretien, L. (1991). The dynamics of collective sorting robot-like ants and ant-like robots. In Proceedings of the first conference on simulation of adaptive behavior: from animal to animats (pp. 356–365). Cambridge: MIT Press. Google Scholar
  35. Deneubourg, J. L., Lioni, A., & Detrain, C. (2002). Dynamics of aggregation and emergence of cooperation. Biological Bulletin, 202(3), 262–267. Google Scholar
  36. Desneux, J. (1956). Structures “atypiques” dans les nidifications souterraines d’Apicotermes Lamani Sj. (Isoptera, Termitidae) mises en évidence par la radiographie. Insectes Sociaux, V3(2), 277–281. Google Scholar
  37. Detrain, C., & Deneubourg, J. L. (1997). Scavenging by Pheidole pallidula: a key for understanding decision-making systems in ants. Animal Behaviour, 53(3), 537–547. Google Scholar
  38. Detrain, C., & Deneubourg, J. L. (2006). Self-organized structures in a superorganism: do ants “behave” like molecules? Physics of Life Reviews, 3(3), 162–187. Google Scholar
  39. Detrain, C., Natan, C., & Deneubourg, J. L. (2001). The influence of the physical environment on the self-organised foraging patterns of ants. Naturwissenschaften, 88(4), 171–174. Google Scholar
  40. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B, 26(1), 29–41. Google Scholar
  41. Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant algorithms for discrete optimization. Artificial Life, 5(2), 137–172. Google Scholar
  42. Dornhaus, A., Franks, N. R., Hawkins, R. M., & Shere, H. N. S. (2004). Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behaviour, 67(5), 959–963. Google Scholar
  43. Downing, H. A., & Jeanne, R. L. (1988). Nest construction by the paperwasp Polistes: a test of stigmergy theory. Animal Behaviour, 36, 1729–1739. Google Scholar
  44. Downing, H. A., & Jeanne, R. L. (1990). The regulation of complex building behavior in the paperwasp Polistes fuscatus. Animal Behaviour, 39, 105–124. Google Scholar
  45. Dussutour, A., Fourcassié, V., Helbing, D., & Deneubourg, J. L. (2004). Optimal traffic organization in ants under crowded conditions. Nature, 428(6978), 70–73. Google Scholar
  46. Dussutour, A., Deneubourg, J. L., & Fourcassié, V. (2005). Amplification of individual preferences in a social context: the case of wall-following in ants. Proceedings of the Royal Society B Biological Sciences, 272, 705–714. Google Scholar
  47. Forel, A. (1921). Le monde social des fourmis du globe comparé à celui de l’homme. Genève: Librairie Kundig. Google Scholar
  48. Franks, N. R. (1986). Teams in social insects: group retrieval of prey by army ants (Eciton burchelli, Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 18, 425–429. Google Scholar
  49. Franks, N. R. (1989). Army ants: a collective intelligence. American Scientist, 77, 139–145. Google Scholar
  50. Franks, N. R., & Fletcher, C. R. (1983). Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Colorado Island, Panama. Behavioral Ecology and Sociobiology, V12(4), 261–270. Google Scholar
  51. Franks, N. R., Wilby, A., Silverman, B. W., & Tofts, C. (1992). Self-organizing nest construction in ants: sophisticated building by blind bulldozing. Animal Behaviour, 44(2), 357–375. Google Scholar
  52. Franks, N. R., Dornhaus, A., Fitzsimmons, J. P., & Stevens, M. (2003). Speed versus accuracy in collective decision making. Proceedings of the Royal Society B Biological Sciences, 270(1532), 2457–2463. Google Scholar
  53. Gadagkar, R., & Joshi, N. V. (1983). Quantitative ethology of social wasps: time-activity budgets and caste differentiation in Ropalidia marginata (Lep.) (Hymenoptera: Vespidae). Animal Behaviour, 31, 26–31. Google Scholar
  54. Gadagkar, R., & Joshi, N. V. (1984). Social organization in the Indian wasp Ropalidia cyathiformis (Fab.) (Hymenoptera: Vespidae). Zeitschrift fur Tierpsychologie, 64, 15–32. Google Scholar
  55. Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., & Theraulaz, G. (2005). Aggregation behaviour as a source of collective decision in a group of cockroach-like robots. In Proceedings of the 8th European conference on artificial life (pp. 169–178), 5–7 September 2005. Berlin: Springer. Google Scholar
  56. Gautrais, J., Theraulaz, G., Deneubourg, J. L., & Anderson, C. (2002). Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology, 215(3), 363–373. Google Scholar
  57. Gautrais, J., Jost, C., Jeanson, R., & Theraulaz, G. (2004). How individual interactions control aggregation patterns in gregarious arthropods. Interaction Studies, 5(2), 245–269. Google Scholar
  58. Gautrais, J., Michelena, P., Sibbald, A., Bon, R., & Deneubourg, J.-L. (2007, in press). Allelomimetic synchronisation in Merino sheep. Animal Behaviour. Google Scholar
  59. Gordon, D. M. (1989). Dynamics of task switching in harvester ants. Animal Behaviour, 38, 194–204. Google Scholar
  60. Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380(6570), 121–124. Google Scholar
  61. Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine ant. Naturwissenschaften, 76, 579–581. Google Scholar
  62. Grassé, P. P. (1959). La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de la stigmergie : essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6, 41–81. Google Scholar
  63. Grassé, P. P. (1984). Termitologia, Tome II. Fondation des Sociétés. Construction. Paris: Masson. Google Scholar
  64. Grünbaum, D., Viscido, S. V., & Parrish, J. K. (2005). Extracting interactive control algorithms from group dynamics of schooling fish. In Proceedings of the cooperative control conference (pp. 103–117). Heidelberg: Springer. Google Scholar
  65. Haskins, C. P., & Haskins, E. F. (1974). Notes on necrophoric behaviour in the archaïc ant Myrmecia vindex (Formicidae: Myrmeciinae). Psyche, 81, 258–267. CrossRefGoogle Scholar
  66. Helbing, D., Molnàr, P., Farkas, I. J., & Bolay, K. (2001). Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3), 361–383. Google Scholar
  67. Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard University Press. Google Scholar
  68. Howard, D. F., & Tschinkel, W. R. (1976). Aspects of necrophoric behaviour in the red imported fire ant, Solenopsis invicta. Behaviour, 56, 157–180. Google Scholar
  69. Jeanson, R., Ratnieks, F. L. W., & Deneubourg, J. L. (2003). Pheromone trail decay rates on different substrates in the Pharaoh’s ant, Monomorium pharaonis. Physiological Entomology, 28(3), 192–198. Google Scholar
  70. Jeanson, R., Deneubourg, J. L., Grimal, A., & Theraulaz, G. (2004). Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus. Behavioral Ecology and Sociobiology, 55, 388–394. Google Scholar
  71. Janson, S., Middendorf, M., & Beekman, M. (2005). Honeybee swarms: how do scouts guide a swarm of uninformed bees? Animal Behaviour, 70(2), 349–358. Google Scholar
  72. Jha, S., Casey-Ford, R. G., Pedersen, J. S., Platt, T. G., Cervo, R., Queller, D. C., & Strassmann, J. E. (2006). The queen is not a pacemaker in the small-colony wasps Polistes instabilis and P. dominulus. Animal Behaviour, 71, 1197–1203. Google Scholar
  73. Jost, C., Verret, J., Casellas, E., Gautrais, J., Challet, M., Lluc, J., Blanco, S., Clifton, M. J., & Theraulaz, G. (2007). The interplay between a self-organized process and an environmental template: corpse clustering under the influence of air currents in ants. Journal of the Royal Society Interface, 4, 107–116. Google Scholar
  74. Karsai, I., & Theraulaz, G. (1995). Nest building in a social wasp: postures and constraints. Sociobiology, 26, 83–114. Google Scholar
  75. Karsai, I., & Wenzel, J. W. (1998). Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proceeding of the National Academy of Sciences, 95(15), 8665–8669. Google Scholar
  76. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (pp. 1942–1948). Washington: Bureau of Labor Statistics. Google Scholar
  77. Krieger, M. J. B., Billeter, J. B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(6799), 992–995. Google Scholar
  78. Kuntz, P., Snyers, D., & Layzell, P. (1999). A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 5(3), 327–351. MATHGoogle Scholar
  79. Ledoux, A. (1950). Recherche sur la biologie de la fourmis fileuse (Oecophylla longinoda Latr.). Annales des Sciences Naturelles et Zoologiques, 11, 313–409. Google Scholar
  80. Lioni, A., Sauwens, C., Theraulaz, G., & Deneubourg, J. L. (2001). Chain formation in Oecophylla longinoda. Journal of Insect Behavior, 14, 679–696. Google Scholar
  81. Maeterlinck, M. (1927). The life of the white ant. London: Allen & Unwin. Google Scholar
  82. Melhuish, C., Wilson, M., & Sendova-Franks, A. (2001). Patch sorting: multi-object clustering using minimalist robots. In Proceedings of the 6th European conference on advances in artificial life (pp. 543–552). London: Springer. Google Scholar
  83. Menzel, R., & Giurfa, M. (2001). Cognitive architecture of a mini-brain: the honeybee. Trends in Cognitive Sciences, 5, 62–71. Google Scholar
  84. Moffett, M. W. (1988). Cooperative food transport by an Asiatic ant. National Geographic Research, 4, 386–394. Google Scholar
  85. Pankiw, T., Waddington, K. D., & Page, R. E. (2001). Modulation of sucrose response thresholds in honey bees (Apis mellifera L.): influence of genotype, feeding, and foraging experience. Journal of Comparative Physiology A, 187(4), 293–301. Google Scholar
  86. Parrish, J. K., Viscido, S. V., & Grünbaum, D. (2002). Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 202(3), 296–305. Google Scholar
  87. Portha, S., Deneubourg, J. L., & Detrain, C. (2002). Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behavioral Ecology, 13(6), 776–781. Google Scholar
  88. Portha, S., Deneubourg, J. L., & Detrain, C. (2004). How food type and brood influence foraging decisions of Lasius niger scouts. Animal Behaviour, 68(1), 115–122. Google Scholar
  89. Pratt, S. C., Mallon, E. B., Sumpter, D. J. T., & Franks, N. R. (2002). Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behavioral Ecology and Sociobiology, 52(2), 117–127. Google Scholar
  90. Reeve, H. K., & Gamboa, G. J. (1983). Colony activity integration in primitively eusocial wasps: the role of the queen (Polistes fuscatus, Hymenoptera: Vespidae). Behavioral Ecology and Sociobiology, 13, 63–74. Google Scholar
  91. Reeve, H. K., & Gamboa, G. J. (1987). Queen regulation of worker foraging in paper wasp: a social feedback control system (Polistes fuscatus, Hymenoptera: Vespidae). Behaviour, 106, 147–167. Google Scholar
  92. Reynolds, C. W. (1987). Flocks, herds and school: a distributed behavioral model. Computer Graphic, 21(4), 25–34. MathSciNetGoogle Scholar
  93. Robinson, G. E. (1992). Regulation of division of labor in insect societies. Annual Review of Entomology, 37(1), 637–665. Google Scholar
  94. Seeley, T. D. (2002). When is self-organization used in biological systems? Biological Bulletin, 202(3), 314–318. Google Scholar
  95. Seeley, T. D., Camazine, S., & Sneyd, J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behavioural Ecology and Sociobiology, 28, 277–290. Google Scholar
  96. Seeley, T. D., & Tautz, J. (2001). Worker piping in honey bee swarms and its role in preparing for liftoff. Journal of Comparative Physiology A, 187, 667–676. Google Scholar
  97. Seeley, T. D., & Visscher, P. K. (2004). Group decision making in nest-site selection by honey bees. Apidologie, 35, 101–116. Google Scholar
  98. Sudd, J. H. (1965). The transport of prey by ants. Behaviour, 25, 234–271. Google Scholar
  99. Sumpter, D. J. T., & Beekman, M. (2003). From nonlinearity to optimality: pheromone trail foraging by ants. Animal Behaviour, 66(2), 273–280. Google Scholar
  100. Theraulaz, G., & Bonabeau, E. (1995a). Coordination in distributed building. Science, 269(5224), 686–688. Google Scholar
  101. Theraulaz, G., & Bonabeau, E. (1995b). Modeling the collective building of complex architectures in social insects with lattice swarms. Journal of Theoretical Biology, 177, 381–400. Google Scholar
  102. Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5, 97–116. Google Scholar
  103. Theraulaz, G., Gervet, J., & Semenoff, S. (1991). Social regulation of foraging activities in Polistes dominulus Christ: a systemic approach to behavioural organization. Behaviour, 116, 292–320. Google Scholar
  104. Theraulaz, G., Gervet, J., Thon, B., Pratte, M., & Semenoff, S. (1992). The dynamics of colony organization in the primitively eusocial wasp Polistes dominulus (Christ). Ethology, 91, 177–202. CrossRefGoogle Scholar
  105. Theraulaz, G., Bonabeau, E., & Deneubourg, J. L. (1998a). The origin of nest complexity in social insects. Complexity, 3(6), 15–25. Google Scholar
  106. Theraulaz, G., Bonabeau, E., & Deneubourg, J. L. (1998b). Response thresholds reinforcement and division of labor in insect societies. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 327–332. Google Scholar
  107. Theraulaz, G., Bonabeau, E., Nicolis, S. C., Sole, R. V., Fourcassié, V., Blanco, S., Fournier, R., Joly, J. L., Fernandez, P., Grimal, A., Dalle, P., & Deneubourg, J. L. (2002). Spatial patterns in ant colonies. Proceeding of the National Academy of Sciences, 99(15), 9645–9649. MATHGoogle Scholar
  108. Theraulaz, G., Gautrais, J., Camazine, S., & Deneubourg, J. L. (2003). The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philosophical Transaction of the Royal Society A, 361(1807), 1263–1282. MathSciNetCrossRefGoogle Scholar
  109. Thorpe, W. H. (1963). Learning and instinct in animals. London: Methuen. Google Scholar
  110. Traniello, J. F. A., & Robson, S. K. (1995). In W. J. Bell & R. Cardé (Eds.), The chemical ecology of insects (Vol. II, pp. 241–285). London: Chapman and Hall. Google Scholar
  111. Tschinkel, W. R. (2003). Subterranean ant nests: trace fossils past and future? Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1–4), 321–333. Google Scholar
  112. Tschinkel, W. R. (2004). The nest architecture of the Florida harvester ant, Pogonomyrmex badius. Journal of Insect Science, 4, 21. Google Scholar
  113. Vittori, K., Talbot, G., Gautrais, J., Fourcassié, V., Araujo, A. F. R., & Theraulaz, G. (2006). Path efficiency of ant foraging trails in an artificial network. Journal of Theoretical Biology, 239, 507–515. MathSciNetGoogle Scholar
  114. Weidenmüller, A. (2004). The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behavioral Ecology, 15(1), 120–128. Google Scholar
  115. Wenzel, J. W. (1991). Evolution of nest architecture. In K. G. Ross & R. W. Matthews (Eds.), The social biology of wasps (pp. 480–519). Cornell University Press. Google Scholar
  116. Wenzel, J. W. (1996). In S. Turillazzi & M. J. West-Eberhard (Eds.), Natural history of paper-wasps (pp. 58–74). Oxford: University Press. Google Scholar
  117. Wilson, E. O. (1962). Chemical communication among workers of the fire ants Solenopsis saevisima (Fr. Smith): I. The organization of mass foraging. Animal Behaviour, 10, 134–147. Google Scholar
  118. Wilson, E. O. (1971). The insect societies. Cambridge: Harvard University Press. Google Scholar
  119. Wilson, M., Melhuish, C., Sendova-Franks, A. B., & Scholes, S. (2004). Algorithms for building annular structures with minimalist robots inspired by brood sorting in ant colonies. Autonomous Robots, 17(2), 115–136. Google Scholar
  120. Wojtusiak, J., Godzinska, E. J., & Dejean, A. (1994). Capture and retrieval of very large prey by workers of the African weaver ant Oecophylla longinoda (Latreille). In A. Lenoir, G. Arnold & M. Lepage (Eds.), Les insectes sociaux. 12th congress of the international union for the study of social insects (p. 548), Paris, Sorbonne, 21–27 August 1994. Paris: Université Paris Nord. Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Simon Garnier
    • 1
  • Jacques Gautrais
    • 1
  • Guy Theraulaz
    • 1
  1. 1.Centre de Recherches sur la Cognition Animale, UMR-CNRS 5169Université Paul SabatierToulouseFrance

Personalised recommendations