Direct synthesis of carbon nanotubes on fly ash particles to produce carbon nanotubes/fly ash composites

  • Fangxian LiEmail author
  • Cheng Zhou
  • Pengfei Yang
  • Beihan Wang
  • Jie Hu
  • Jiangxiong Wei
  • Qijun Yu
Research Article


Fly ash was used as catalytic support for carbon nanotubes (CNTs) growth by chemical vapor deposition (CVD) due to having ideal compositions (SiO2,Al2O3, and Fe2O3). In this paper, CNTs were synthesized on Ni catalyst/fly ash substrate using CVD method. The influence of parameters (e.g., reaction temperature and gas flow rate) on the carbon yield and structure of the resulting CNTs was on the carbon yield and structure of the resulting CNTs was investigated by thermo-gravimetric analyses, Scanning electron microscopy, and Raman spectroscopy analysis. The results indicated that the growth temperature controlling had a significant effect on the diameter of CNTs. And the proper acetylene and hydrogen flow rate would decrease in defect density and increase in yield of as-grown CNTs on fly ash. Finally, the amorphous carbon on the surface of as-grown CNTs were removed by heating in air. Experimental results showed that the hydrophobic of the annealed CNTs was weak due to introducing functional groups to the surface of CNTs.


carbon nanotubes fly ash chemical vapor deposition parameters purification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant No. 51472090), and the Science and Technology Program of Guangzhou (No. 201607010047), and the Natural Science Foundation of Guangdong Province (No. 2017A030313281).


  1. 1.
    Kim H K, Nam I W, Lee H K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 2014, 107: 60–69CrossRefGoogle Scholar
  2. 2.
    Zhang Q, Liu J, Sager R, Dai L, Baur J. Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties. Composites Science and Technology, 2009, 69(5): 594–601CrossRefGoogle Scholar
  3. 3.
    Khalili S, Haghbin A. Investigation on design parameters of single-walled carbon nanotube reinforced nanocomposites under impact loads. Composite Structures, 2013, 98: 253–260CrossRefGoogle Scholar
  4. 4.
    Yang Z, Xia A Y, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. Journal of the American Chemical Society, 2007, 129(6): 1673–1679CrossRefGoogle Scholar
  5. 5.
    Hagen M, Dörfler S, Althues H, Tübke J, Hoffmann M J, Kaskel S, Pinkwart K. Lithium-sulphur batteries—Binder free carbon nano-tubes electrode examined with various electrolytes. Journal of Power Sources, 2012, 213: 239–248CrossRefGoogle Scholar
  6. 6.
    Lu C, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 2005, 39(6): 1183–1189CrossRefGoogle Scholar
  7. 7.
    Schnorr J M, Swager T M. Emerging applications of carbon nanotubes. Chemistry of Materials, 2011, 23(3): 646–657CrossRefGoogle Scholar
  8. 8.
    Chaipanich A, Nochaiya T, Wongkeo W, Torkittikul P. Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2010, 527(4–5): 1063–1067CrossRefGoogle Scholar
  9. 9.
    Sun S, Yu X, Han B, Ou J. In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: A review. Construction & Building Materials, 2013, 49: 835–840CrossRefGoogle Scholar
  10. 10.
    Raki L, Beaudoin J, Alizadeh R, Makar J, Sato T. Cement and concrete nanoscience and nanotechnology. Materials (Basel), 2010, 3(2): 918–942CrossRefGoogle Scholar
  11. 11.
    Nasibulin A G, Shandakov S D, Nasibulina L I, Cwirzen A, Mudimela P R, Habermehl-Cwirzen K, Grishin D A, Gavrilov Y V, Malm J E M, Tapper U, Tian Y, Penttala V, Karppinen M J, Kauppinen E I. A novel cement-based hybrid material. New Journal of Physics, 2009, 11(2): 023013CrossRefGoogle Scholar
  12. 12.
    Mudimela P R, Nasibulina L I, Nasibulin A G, Cwirzen A, Valkeapaa M, Habermehl-Cwirzen K, Malm J E M, Karppinen M J, Penttala V, Koltsova T S, Tolochko O V, Kauppinen E I. Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials. Journal of Nanomaterials, 2009, 2009: 1–4CrossRefGoogle Scholar
  13. 13.
    Ghaharpour F, Bahari A, Abbasi M, Ashkarran A A. Parametric investigation of CNT deposition on cement by CVD process. Construction & Building Materials, 2016, 113: 523–535CrossRefGoogle Scholar
  14. 14.
    Ludvig P, Calixto J M, Ladeira L O, Gaspar I C P. Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Materials (Basel), 2011, 4(3): 575–584CrossRefGoogle Scholar
  15. 15.
    Dunens O M, Mackenzie K J, Harris A T. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. Environmental Science & Technology, 2016, 113: 523–535Google Scholar
  16. 16.
    He C, Zhao N, Shi C, Liu E, Li J. Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications. Advanced Materials, 2015, 27(36): 5422–5431CrossRefGoogle Scholar
  17. 17.
    Ratkovic S, Peica N, Thomsen C, Bukur D B, Boskovic G. Thermal stability evolution of carbon nanotubes caused by liquid oxidation. Journal of Thermal Analysis and Calorimetry, 2014, 115(2): 1477–1486CrossRefGoogle Scholar
  18. 18.
    Metaxa Z S, Konsta-Gdoutos M S, Shah S P. Carbon nanofiber cementitious composites: Effect of debulking procedure on dispersion and reinforcing efficiency. Cement and Concrete Composites, 2013, 36: 25–32CrossRefGoogle Scholar
  19. 19.
    Kashi M B, Aghababazadeh R, Arabi H, Mirhabibi A. Synthesis of high-quality single- and double-walled carbon nanotubes on Fe/MgO catalysts. Nanomaterials and Nanotechnology, 2016, 6: 381–389CrossRefGoogle Scholar
  20. 20.
    Allaedini G, Tasirin S M, Aminayi P. Synthesis of CNTs via chemical vapor deposition of carbon dioxide as a carbon source in the presence of NiMgO. Journal of Alloys and Compounds, 2015, 647: 809–814CrossRefGoogle Scholar
  21. 21.
    Ma Y, Dichiara A B, He D, Zimmer L, Bai J. Control of product nature and morphology by adjusting the hydrogen content in a continuous chemical vapor deposition process for carbon nanotube synthesis. Carbon, 2016, 107: 171–179CrossRefGoogle Scholar
  22. 22.
    Allaedini G, Tasirin S M, Aminayi P. Yield optimization of nanocarbons prepared via chemical vapor decomposition of carbon dioxide using response surface methodology. Diamond and Related Materials, 2016, 66: 196–205CrossRefGoogle Scholar
  23. 23.
    Lehman J H, Terrones M, Mansfield E, Hurst K E, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49(8): 2581–2602CrossRefGoogle Scholar
  24. 24.
    Awadallah A E, Aboul-Enein A A, Aboul-Gheit A K. Effect of progressive Co loading on commercial Co-Mo/Al2O3 catalyst for natural gas decomposition to COx-free hydrogen production and carbon nanotubes. Energy Conversion and Management, 2014, 77: 143–151CrossRefGoogle Scholar
  25. 25.
    Zhang X, Zhang Q, Zheng J. Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber. Composites Science and Technology, 2014, 99: 1–7CrossRefGoogle Scholar
  26. 26.
    Munir K S, Qian M, Li Y, Oldfield D T, Kingshott P, Zhu D M, Wen C. Quantitative analyses of MWCNT-Ti powder mixtures using raman spectroscopy: The influence of milling parameters on nanostructural evolution. Advanced Engineering Materials, 2015, 17(11): 1660–1669CrossRefGoogle Scholar
  27. 27.
    Hintsho N, Shaikjee A, Masenda H, Naidoo D, Billing D, Franklyn P, Durbach S. Direct synthesis of carbon nanofibers from South African coal fly ash. Nanoscale Research Letters, 2014, 9(1): 387–398CrossRefGoogle Scholar
  28. 28.
    Golshadi M, Maita J, Lanza D, Zeiger M, Presser V, Schrlau M G. Effects of synthesis parameters on carbon nanotubes manufactured by template-based chemical vapor deposition. Carbon, 2014, 80: 28–39CrossRefGoogle Scholar
  29. 29.
    Yardimci A I, Yılmaz S, Selamet Y. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co-Mo/MgO catalyst. Diamond and Related Materials, 2015, 60: 81–86CrossRefGoogle Scholar
  30. 30.
    Cao A, Liu G, Wang L, Liu J, Yue Y, Zhang L, Liu Y. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas. Journal of Materials Science, 2016, 51(11): 5216–5231CrossRefGoogle Scholar
  31. 31.
    Dementev N, Osswald S, Gogotsi Y, Borguet E. Purification of carbon nanotubes by dynamic oxidation in air. Journal of Materials Chemistry, 2009, 19(42): 7904–7908CrossRefGoogle Scholar
  32. 32.
    32.Naseh M V, Khodadadi A A, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon, 2010, 48(5): 1369–1379CrossRefGoogle Scholar
  33. 33.
    Kuzmenko V, Naboka O, Haque M, Staaf H, Göransson G, Gatenholm P, Enoksson P. Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors. Energy, 2015, 90: 1490–1496CrossRefGoogle Scholar
  34. 34.
    Im Y O, Lee S H, Kim T, Park J, Lee J, Lee K H. Utilization of carboxylic functional groups generated during purification of carbon nanotube fiber for its strength improvement. Applied Surface Science, 2017, 392: 342–349CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fangxian Li
    • 1
    Email author
  • Cheng Zhou
    • 1
  • Pengfei Yang
    • 1
  • Beihan Wang
    • 1
  • Jie Hu
    • 1
  • Jiangxiong Wei
    • 1
  • Qijun Yu
    • 1
  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations