Frontiers of Structural and Civil Engineering

, Volume 13, Issue 2, pp 495–503 | Cite as

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

  • Ali Hossein Nezhad ShiraziEmail author
Research Article


Phagraphene is a very attractive two-dimensional (2D) full carbon allotrope with very interesting mechanical, electronic, optical, and thermal properties. The objective of this study is to investigate the mechanical properties of this new graphene like 2D material. In this work, mechanical properties of phagraphene have been studied not only in the defect-free form, but also with the critical defect of line cracks, using the classical molecular dynamics simulations. Our study shows that the pristine phagraphene in zigzag direction experience a ductile behavior under uniaxial tensile loading and the nanosheet in this direction are less sensitive to temperature changes as compared to the armchair direction. We studied different crack lengths to explore the influence of defects on the mechanical properties of phagraphene. We also investigated the temperature effect on the mechanical properties of pristine and defective phagraphene. Our classical atomistic simulation results confirm that larger cracks can reduce the strength of the phagraphene. Moreover, it was shown the temperature has a considerable weakening effect on the tensile strength of phagraphene. The results of this study may be useful for the design of nano-devices using the phagraphene.


phaqraphene mechanical properties crack propaqation molecular dynamics thermal effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669CrossRefGoogle Scholar
  2. 2.
    Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191CrossRefGoogle Scholar
  3. 3.
    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S B T, Ruoff R S. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565CrossRefGoogle Scholar
  4. 4.
    Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006, 16(2): 155–158CrossRefGoogle Scholar
  5. 5.
    Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 2008, 8(1): 323–327CrossRefGoogle Scholar
  6. 6.
    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008, 92(15): 151911CrossRefGoogle Scholar
  7. 7.
    Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534CrossRefGoogle Scholar
  8. 8.
    Novoselov K S. Graphene: Materials in the Flatland. Nobel Lecture, 2010, 106–131Google Scholar
  9. 9.
    Geim A K. Nobel Lecture: random walk to graphene. Reviews of Modern Physics, 2011, 83(3): 851–862CrossRefGoogle Scholar
  10. 10.
    Mortazavi B, Pereira L F C, Jiang J W, Rabczuk T. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228CrossRefGoogle Scholar
  11. 11.
    Eigler S. Graphene. An Introduction to the Fundamentals and Industrial Applications. Edited by Madhuri Sharon and Maheshwar Sharon. Angewandte Chemie International Editon. Wiley-Blackwell, 2016, doi: 10.1002/anie.201602067Google Scholar
  12. 12.
    Sainsbury T, Gnaniah S, Spencer S J, Mignuzzi S, Belsey N A, Paton K R, Satti A. Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon, 2017, 114: 367–376CrossRefGoogle Scholar
  13. 13.
    Kim Y, Lee J, Yeom M S, Shin J W, Kim H, Cui Y, Kysar J W, Hone J, Jung Y, Jeon S, Han S M. Strengthening effect of singleatomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4, doi: 10.1038/ncomms3114Google Scholar
  14. 14.
    Mortazavi B, Hassouna F, Laachachi A, Rajabpour A, Ahzi S, Chapron D, Toniazzo V, Ruch D. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochimica Acta, 2013, 552: 106–113CrossRefGoogle Scholar
  15. 15.
    Mortazavi B, Rabczuk T. Multiscale modeling of heat conduction in graphene laminates. Carbon, 2015, 85: 1–7CrossRefGoogle Scholar
  16. 16.
    Malekpour H, Chang K H, Chen J C, Lu C Y, Nika D L, Novoselov K S, Balandin A A. Thermal conductivity of graphene laminate. Nano Letters, 2014, 14(9): 5155–5161CrossRefGoogle Scholar
  17. 17.
    Mortazavi B, Yang H, Mohebbi F, Cuniberti G, Rabczuk T. Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Applied Energy, 2017, 202: 323–334CrossRefGoogle Scholar
  18. 18.
    Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114CrossRefGoogle Scholar
  19. 19.
    Almasi A, Silani M, Talebi H, Rabczuk T. Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites. Composite Structures, 2015, 133: 1302–1312CrossRefGoogle Scholar
  20. 20.
    Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535CrossRefGoogle Scholar
  21. 21.
    Silani M, Talebi H, Ziaei-Rad S, Kerfriden P, Bordas S P A, Rabczuk T. Stochastic modelling of clay/epoxy nanocomposites. Composite Structures, 2014, 118: 241–249CrossRefGoogle Scholar
  22. 22.
    Hamdia K M, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190CrossRefGoogle Scholar
  23. 23.
    Mortazavi B, Dianat A, Cuniberti G, Rabczuk, T. Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochimica Acta, 2016, 213: 865–870CrossRefGoogle Scholar
  24. 24.
    Shirazi A H N, Abadi, R, Izadifar M, Alajlan N, Rabczuk T. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147, 316–321CrossRefGoogle Scholar
  25. 25.
    Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah MS, Park N, Shin H J, Oh J H, Baek J B. Twodimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7414–7419CrossRefGoogle Scholar
  26. 26.
    Mortazavi B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon, 2017, 118: 25–34CrossRefGoogle Scholar
  27. 27.
    Mortazavi B, Rahaman O, Rabczuk T, Pereira L F C. Thermal conductivity and mechanical properties of nitrogenated holey graphene. Carbon, 2016, 106: 1–8CrossRefGoogle Scholar
  28. 28.
    Mortazavi B, Rémond Y, Ahzi S, Toniazzo V. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302CrossRefGoogle Scholar
  29. 29.
    Mortazavi B, Rahaman O, Dianat A, Rabczuk T. Mechanical responses of borophene sheets: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18(39): 27405–27413CrossRefGoogle Scholar
  30. 30.
    Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T. Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. Journal of Power Sources, 2016, 329: 456–461CrossRefGoogle Scholar
  31. 31.
    Liu Y, Peng X. Recent advances of supercapacitors based on twodimensional materials. Applied Material Today, 2017, 8: 104–115CrossRefGoogle Scholar
  32. 32.
    Mortazavi B, Shahrokhi M, Rabczuk T, Pereira L F C. Electronic, optical and thermal properties of highly stretchable 2D carbon Eneyne graphyne. Carbon, 2017, 123: 344–353CrossRefGoogle Scholar
  33. 33.
    Liu W R. Graphene-based energy devices. In: Rashid bin Mohd Yusoff, ed. Graphene-Based Energy Devices. Wiley-VCH, 2015, 85–122Google Scholar
  34. 34.
    Xia F, Farmer D B, Lin Y M, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 2010, 10(2): 715–718CrossRefGoogle Scholar
  35. 35.
    Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Advanced Materials, 2009, 21: 4726–4730Google Scholar
  36. 36.
    Lherbier A, Blase X, Niquet Y M, Triozon F, Roche S. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808CrossRefGoogle Scholar
  37. 37.
    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8(2): 119–124CrossRefGoogle Scholar
  38. 38.
    Van Tuan D, Kotakoski J, Louvet T, Ortmann F, Meyer J C, Roche S. Scaling properties of charge transport in polycrystalline graphene. Nano Letters, 2013, 13(4): 1730–1735CrossRefGoogle Scholar
  39. 39.
    Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T. First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87: 228–232CrossRefGoogle Scholar
  40. 40.
    Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G, Roche S. Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1(5): 361–394CrossRefGoogle Scholar
  41. 41.
    Mortazavi B, Lherbier A, Fan Z, Harju A, Rabczuk T, Charlier J C. Thermal and electronic transport characteristics of highly stretchable graphene kirigami. Nanoscale, 2017, 9(42): 16329–16341CrossRefGoogle Scholar
  42. 42.
    Wang Z, Zhou X F, Zhang X, Zhu Q, Dong H, Zhao M, Oganov A R. Phagraphene: a low-energy graphene allotrope composed of 5–6-7 carbon rings with distorted dirac cones. Nano Letters, 2015, 15(9): 6182–6186CrossRefGoogle Scholar
  43. 43.
    Liu Y, Chen Z, Hu S, Yu G, Peng Y. The influence of silicon atom doping phagraphene nanoribbons on the electronic and magnetic properties. Materials Science and Engineering B, 2017, 220: 30–36CrossRefGoogle Scholar
  44. 44.
    Luo A Y, Hu R, Fan Z Q, Zhang H L, Yuan J H, Yang C H, Zhang Z H. Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping. Organic Electronics, 2017, 51: 277–286CrossRefGoogle Scholar
  45. 45.
    Yuan P F, Fan Z Q, Zhang Z H. Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: a theoretical prediction. Carbon, 2017, 124: 228–237CrossRefGoogle Scholar
  46. 46.
    Pereira L F C, Mortazavi B, Makaremi M, Rabczuk T. Anisotropic thermal conductivity and mechanical properties of phagraphene: a molecular dynamics study. RSC Advances, 2016, 6(63): 57773–57779CrossRefGoogle Scholar
  47. 47.
    Abadi R, Uma R P, Izadifar M, Rabczuk T. The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet. Computational Materials Science, 2016, 123: 277–286CrossRefGoogle Scholar
  48. 48.
    Mortazavi B, Cuniberti G. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 2014, 4(37): 19137–19143CrossRefGoogle Scholar
  49. 49.
    Abadi R, Uma R P, Izadifar M, Rabczuk T. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Computational Materials Science, 2017, 131: 86–99CrossRefGoogle Scholar
  50. 50.
    Talebi H, Silani M, Bordas S P, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11 (6): 527–541CrossRefGoogle Scholar
  51. 51.
    Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92CrossRefGoogle Scholar
  52. 52.
    Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23CrossRefGoogle Scholar
  53. 53.
    Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071MathSciNetCrossRefGoogle Scholar
  54. 54.
    Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148CrossRefGoogle Scholar
  55. 55.
    Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. ComputationalMaterials Science, 2015, 99: 285–289Google Scholar
  56. 56.
    Hamdia K M, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227CrossRefGoogle Scholar
  57. 57.
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19CrossRefzbMATHGoogle Scholar
  58. 58.
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012CrossRefGoogle Scholar
  59. 59.
    Tsai D H. The virial theorem and stress calculation in molecular dynamics. Journal of Chemical Physics, 1979, 70(3): 1375–1382CrossRefGoogle Scholar
  60. 60.
    Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science, 2008, 321(5887): 385–388CrossRefGoogle Scholar
  61. 61.
    Irwin G R. Fracture. In: Flügge S, ed. Elast. Plast. /Elastizität Und Plast. Springer Berlin Heidelberg, 1958, 551–590Google Scholar
  62. 62.
    Gross D, Seelig T. Fracture Mechanics: With An Introduction to Micromechanics (2nd ed). Heidelberg: Springer, 2011CrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Structural MechanicsBauhaus-Universität WeimarWeimarGermany

Personalised recommendations