Advertisement

Frontiers of Structural and Civil Engineering

, Volume 13, Issue 2, pp 486–494 | Cite as

Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles

  • Mohammad SalavatiEmail author
Research Article
  • 60 Downloads

Abstract

During the last decade, numerous high-quality two-dimensional (2D) materials with semiconducting electronic character have been synthesized. Recent experimental study (Sci. Adv. 2017;3: e1700481) nevertheless confirmed that 2D ZrSe2 and HfSe2 are among the best candidates to replace the silicon in nanoelectronics owing to their moderate band-gap. We accordingly conducted first-principles calculations to explore the mechanical and electronic responses of not only ZrSe2 and HfSe2, but also ZrS2 and HfS2 in their single-layer and free-standing form. We particularly studied the possibility of engineering of the electronic properties of these attractive 2D materials using the biaxial or uniaxial tensile loadings. The comprehensive insight provided concerning the intrinsic properties of HfS2, HfSe2, ZrS2, and ZrSe2 can be useful for their future applications in nanodevices.

Keywords

2D materials mechanical electronic DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669CrossRefGoogle Scholar
  2. 2.
    Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191CrossRefGoogle Scholar
  3. 3.
    Guinea F, Katsnelson M I, Geim K. Energy gaps and zero-field quantum Hall effect in graphene by strain engineering. Nature Physics, 2010, 6(1): 30–33CrossRefGoogle Scholar
  4. 4.
    Lherbier A, Botello-Méndez A R, Jean-Christophe C. Electronic and optical properties of pristine and oxidized borophene. 2D Materials, 2016, 3: 45006CrossRefGoogle Scholar
  5. 5.
    Lherbier A, Blase X, Niquet Y M, Triozon F, Roche S. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808CrossRefGoogle Scholar
  6. 6.
    Martins T B, Miwa R H, Da Silva A J R, Fazzio A. Electronic and transport properties of boron-doped graphene nanoribbons. Physical Review Letters, 2007, 98(19): 196803CrossRefGoogle Scholar
  7. 7.
    Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425CrossRefGoogle Scholar
  8. 8.
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712CrossRefGoogle Scholar
  9. 9.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150CrossRefGoogle Scholar
  10. 10.
    Mleczko M J, Zhang C, Lee H R, Kuo H H, Magyari-Köpe B, Moore R G, Shen Z X, Fisher I R, Nishi Y, Pop E. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-k oxides. Science Advances, 2017, 3(8): e1700481CrossRefGoogle Scholar
  11. 11.
    Mortazavi B, Pereira L F C, Jiang J W, Rabczuk T. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228CrossRefGoogle Scholar
  12. 12.
    Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. Computational Materials Science, 2015, 99: 285–289CrossRefGoogle Scholar
  13. 13.
    Mortazavi B, Hassouna F, Laachachi A, Rajabpour A, Ahzi S, Chapron D, Toniazzo V, Ruch D. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/ expanded graphite polymer nanocomposites. Thermochimica Acta, 2013, 552: 106–113CrossRefGoogle Scholar
  14. 14.
    Mortazavi B, Rahaman O, Rabczuk T, Pereira L F C. Thermal conductivity and mechanical properties of nitrogenated holey graphene. Carbon, 2016, 106: 1–8CrossRefGoogle Scholar
  15. 15.
    Mortazavi B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon, 2017, 118: 25–34CrossRefGoogle Scholar
  16. 16.
    Shahrokhi M. Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains. Optik (Stuttgart), 2017, 136: 205–214CrossRefGoogle Scholar
  17. 17.
    Mortazavi B, Shahrokhi M, Rabczuk T, Pereira L F C. Electronic, optical and thermal properties of highly stretchable 2D carbon Eneyne graphyne. Carbon, 2017, 123: 344–353CrossRefGoogle Scholar
  18. 18.
    Mortazavi B, Shahrokhi M, Makaremi M, Rabczuk T. Theoretical realization of Mo2P; a novel stable 2D material with superionic conductivity and attractive optical properties. Applied Materials Today, 2017, 9: 292–299CrossRefGoogle Scholar
  19. 19.
    Mortazavi B, Rahaman O, Dianat A, Rabczuk T. Mechanical responses of borophene sheets: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18(39): 27405–27413CrossRefGoogle Scholar
  20. 20.
    Mortazavi B, Rabczuk T. Multiscale modeling of heat conduction in graphene laminates. Carbon, 2015, 85: 1–7CrossRefGoogle Scholar
  21. 21.
    Shahrokhi M, Leonard C. Quasi-particle energies and optical excitations of wurtzite BeO and its nanosheet. Journal of Alloys and Compounds, 2016, 682: 254–262CrossRefGoogle Scholar
  22. 22.
    Shahrokhi M, Leonard C. Tuning the band gap and optical spectra of silicon-doped graphene: many-body effects and excitonic states. Journal of Alloys and Compounds, 2017, 693: 1185–1196CrossRefGoogle Scholar
  23. 23.
    Salavati M, Ghasemi H, Rabczuk T. Electromechanical properties of Boron Nitride Nanotube: atomistic bond potential and equivalent mechanical energy approach. Journal of Computational Materials Science 2018, 149: 460–465CrossRefGoogle Scholar
  24. 24.
    Shahrokhi M, Naderi S, Fathalian A. Ab initio calculations of optical properties of B2C graphene sheet. Solid State Communications, 2012, 152(12): 1012–1017CrossRefGoogle Scholar
  25. 25.
    Shahrokhi M. Quasi-particle energies and optical excitations of novel porous graphene phases from first-principles many-body calculations. Diamond and Related Materials, 2017, 77: 35–40CrossRefGoogle Scholar
  26. 26.
    Behzad S, Chegel R, Moradian R, Shahrokhi M. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes. Superlattices and Microstructures, 2014, 73: 185–192CrossRefGoogle Scholar
  27. 27.
    Shahrokhi M, Moradian R. Structural, electronic and optical properties of Zn1–xZrxO nanotubes: first principles study. Indian Journal of Physics, 2015, 89(3): 249–256CrossRefGoogle Scholar
  28. 28.
    Mortazavi B, Rabczuk T. Boron monochalcogenides; stable and strong two-dimensional wide bang-gap semiconductors. Energies, 2018, 11(6): 1573CrossRefGoogle Scholar
  29. 29.
    Mortazavi B, Dianat A, Rahaman O, Cuniberti G, Rabczuk T. Borophene as an anode material for Ca, Mg, Na or Liion storage: a first-principle study. Journal of Power Sources, 2016, 329: 456–461CrossRefGoogle Scholar
  30. 30.
    Mortazavi B, Berdiyorov G R, Shahrokhi M, Rabczuk T. Mechanical, optoelectronic and transport properties of single-layer Ca2N and Sr2N electrides. Journal of Alloys and Compounds, 2018, 739: 643–652CrossRefGoogle Scholar
  31. 31.
    Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92CrossRefGoogle Scholar
  32. 32.
    Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071MathSciNetCrossRefGoogle Scholar
  33. 33.
    Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148CrossRefGoogle Scholar
  34. 34.
    Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143CrossRefGoogle Scholar
  35. 35.
    Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23CrossRefGoogle Scholar
  36. 36.
    Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B: Condensed Matter and Materials Physics, 1999, 59(3): 1758–1775CrossRefGoogle Scholar
  37. 37.
    Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50CrossRefGoogle Scholar
  38. 38.
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics, 1996, 54(16): 11169–11186CrossRefGoogle Scholar
  39. 39.
    Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868CrossRefGoogle Scholar
  40. 40.
    Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of Molecular Graphics, 1996, 14(1): 33–38CrossRefGoogle Scholar
  41. 41.
    Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, 44(6): 1272–1276CrossRefGoogle Scholar
  42. 42.
    Monkhorst H, Pack J. Special points for Brillouin zone integrations. Physical Review B: Condensed Matter and Materials Physics, 1976, 13(12): 5188–5192MathSciNetCrossRefGoogle Scholar
  43. 43.
    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. Journal of Chemical Physics, 2006, 125(22): 224106CrossRefGoogle Scholar
  44. 44.
    Shishkin M, Kresse G. Self-consistent GW calculations for semiconductors and insulators. Phys Rev B, 2007, 75(23): 235102CrossRefGoogle Scholar
  45. 45.
    Shishkin M, Marsman M, Kresse G. Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Physical Review Letters, 2007, 99(24): 246403CrossRefGoogle Scholar
  46. 46.
    Li J, Medhekar N V, Shenoy V B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. Journal of Physical Chemistry C, 2013, 117(30): 15842–15848CrossRefGoogle Scholar
  47. 47.
    Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T. First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E: Low-Dimensional System and Nanostructures, 2017, 87: 228–232CrossRefGoogle Scholar
  48. 48.
    Silvi B, Savin A. Classification of chemical-bonds based on topological analysis of electron localization functions. Nature, 1994, 371(6499): 683–686CrossRefGoogle Scholar
  49. 49.
    Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3): 354–360CrossRefGoogle Scholar
  50. 50.
    Guo H, Lu N, Wang L, Wu X, Zeng X C. Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. Journal of Physical Chemistry C, 2014, 118(13): 7242–7249CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Structural MechanicsBauhaus-Universität WeimarWeimarGermany

Personalised recommendations