Advertisement

Frontiers of Structural and Civil Engineering

, Volume 13, Issue 1, pp 165–175 | Cite as

3D fracture modelling and limit state analysis of prestressed composite concrete pipes

  • Pengfei He
  • Yang ShenEmail author
  • Yun Gu
  • Pangyong Shen
Research Article
  • 24 Downloads

Abstract

In this manuscript, we study fracture of prestressed cylindrical concrete pipes. Such concrete pipes play a major role in tunneling and underground engineering. The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement. This allows the method to capture important phenomena compared to a pure shell model of concrete. A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension. The model is validated through comparisons with experimental data.

Keywords

cylindrical concrete structures limit state analysis 3D fracture modelling prestressed composite pipes reinforced concrete three-point bending test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the support from the Shanghai Municipal Commission of Science and Technology.

References

  1. 1.
    Bažant Z P, Pijaudier-Cabot G. Nonlocal continuum damage, localization instabilities and convergence. Journal of Engineering Mechanics, 1988, 55: 287–293zbMATHGoogle Scholar
  2. 2.
    Bažant Z P. Why continuum damage is nonlocal: micromechanics arguments. Journal of Engineering mechanics, 1991, 117(5): 1070–1087CrossRefGoogle Scholar
  3. 3.
    Bažant Z P, Jirásek M. Non-local integral formulations of plasticity and damage: survey of process. Journal of Engineering Mechanics, 2002, 128(11): 1119–1149CrossRefGoogle Scholar
  4. 4.
    Chen W F. Constitutive Equations for Engineering Materials, Volume 2: Plasticity and Modeling. Amsterdam-London-New York-Tokio: Elsevier, 1994Google Scholar
  5. 5.
    Carol I, Bazant Z P. Damage and plasticity in microplane theory. International Journal of Solids and Structures, 1997, 34(29): 3807–3835CrossRefzbMATHGoogle Scholar
  6. 6.
    Han W, Reddy B D. Plasticity. Mathematical theory and numerical analysis. In: Interdisciplinary Applied Mathematics. Springer, 1999zbMATHGoogle Scholar
  7. 7.
    Peerlings R H J, de Borst R, Brekelmans W A M, Geers M G D. Localisation issures in local and nonlocal continuum approaches to fracture. European Journal of Mechanics–A/Solids, 2002, 21(2): 175–189CrossRefzbMATHGoogle Scholar
  8. 8.
    Peerlings R H J, de Borst R, Brekelmans W A M, de Wree J H W. Gradient enhanced damage for quasi brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391–3403CrossRefzbMATHGoogle Scholar
  9. 9.
    Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604MathSciNetCrossRefGoogle Scholar
  10. 10.
    Miehe C, Hofacker M, Welschinger F. A phase field model for rateindependent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2765–2778MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phasefield models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109CrossRefGoogle Scholar
  13. 13.
    Areias P, Rabczuk T, Msekh M A. Phase-field analysis of finitestrain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350MathSciNetCrossRefGoogle Scholar
  14. 14.
    Msekh M A, Silani M, Jamshidian M, Areias P, Zhuang X, Zi G, He P, Rabczuk T. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114CrossRefGoogle Scholar
  15. 15.
    Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143CrossRefGoogle Scholar
  17. 17.
    Areias P, Reinoso J, Camanho P P, César de Sá J, Rabczuk T. Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics, 2018, 189: 339–360CrossRefGoogle Scholar
  18. 18.
    Nguyen V P, Lian H, Rabczuk T, Bordas S. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017, 225: 68–82CrossRefGoogle Scholar
  19. 19.
    Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric galerkin boundary element method for twodimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275MathSciNetCrossRefGoogle Scholar
  20. 20.
    Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150CrossRefzbMATHGoogle Scholar
  21. 21.
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620CrossRefzbMATHGoogle Scholar
  22. 22.
    Nanthakumar S, Lahmer T, Zhuang X, Zi G, Rabczuk T. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering, 2016, 24(1): 153–176MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23–24): 1419–1443CrossRefGoogle Scholar
  24. 24.
    Bordas S P A, Natarajan S, Kerfriden P, Augarde C, Mahapatra D, Rabczuk T, Pont S. On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). International Journal for Numerical Methods in Engineering, 2011, 86(4–5): 637–666CrossRefzbMATHGoogle Scholar
  25. 25.
    Ghorashi S S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146CrossRefGoogle Scholar
  26. 26.
    Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on kirchhofflove theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chan C L, Anitescu C, Rabczuk T. Volumetric parametrization from a level set boundary representation with pht-splines. Computer Aided Design, 2017, 82: 29–41MathSciNetCrossRefGoogle Scholar
  28. 28.
    Anitescu C, Jia Y, Zhang Y J, Rabczuk T. An isogeometric collocation method using superconvergent points. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 1073–1097MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T. Isogeometric analysis: an overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger K U, Bazilevs Y, Rabczuk T. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47–48): 3410–3424MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nguyen-Thanh N, Nguyen-Xuan H, Bordas S P A, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical Tmeshes for two-dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21–22): 1892–1908MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nguyen B H, Tran H D, Anitescu C, Zhuang X, Rabczuk T. An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 252–275MathSciNetCrossRefGoogle Scholar
  34. 34.
    Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33–35): 3523–3540MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Song J H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893CrossRefzbMATHGoogle Scholar
  36. 36.
    Areias P M A, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. International Journal for Numerical Methods in Engineering, 2006, 195: 5343–5360zbMATHGoogle Scholar
  37. 37.
    Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92–93: 242–256CrossRefGoogle Scholar
  38. 38.
    Hamdia K M, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227CrossRefGoogle Scholar
  39. 39.
    Cai Y, Zhuang X, Zhu H. A generalized and efficient method for finite cover generation in the numerical manifold method. International Journal of Computational Methods, 2013, 10(5): 1350028MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Areias PMA, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63CrossRefGoogle Scholar
  42. 42.
    Areias P, Rabczuk T, Dias da Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137CrossRefGoogle Scholar
  43. 43.
    Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 2015, 56(2): 291–315MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Areias P, Rabczuk T. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41CrossRefGoogle Scholar
  46. 46.
    Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rabczuk T, Areias P M A, Belytschko T. A simplified meshfree method for shear bands with cohesive surfaces. International Journal for Numerical Methods in Engineering, 2007, 69(5): 993–1021CrossRefzbMATHGoogle Scholar
  48. 48.
    Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760CrossRefzbMATHGoogle Scholar
  49. 49.
    Zi G, Rabczuk T, Wall W. Extended meshfree methods without the branch enrichment for cohesive cracks. Computational Mechanics, 2007, 40(2): 367–382CrossRefzbMATHGoogle Scholar
  50. 50.
    Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599CrossRefzbMATHGoogle Scholar
  51. 51.
    Amiri F, Anitescu C, Arroyo M, Bordas S P A, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411CrossRefGoogle Scholar
  53. 53.
    Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495CrossRefzbMATHGoogle Scholar
  54. 54.
    Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71MathSciNetzbMATHGoogle Scholar
  55. 55.
    Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Rabczuk T, Areias P. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Computer Modeling in Engineering & Sciences, 2006, 16(2): 115–130Google Scholar
  57. 57.
    Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960CrossRefGoogle Scholar
  58. 58.
    Rabczuk T, Belytschko T, Xiao S P. Stable particle methods based on lagrangian kernels. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12–14): 1035–1063MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92CrossRefGoogle Scholar
  60. 60.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455CrossRefzbMATHGoogle Scholar
  61. 61.
    Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143CrossRefGoogle Scholar
  62. 62.
    Budarapu P R, Gracie R, Bordas S P A, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148CrossRefGoogle Scholar
  63. 63.
    Silani M, Talebi H, Hamouda A M, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23CrossRefGoogle Scholar
  64. 64.
    Talebi H, Silani M, Rabczuk T. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80(C): 82–92CrossRefGoogle Scholar
  65. 65.
    Silani M, Talebi H, Ziaei-Rad S, Hamouda A M, Zi G, Rabczuk T. A three dimensional extended Arlequin method for dynamic fracture. Computational Materials Science, 2015, 96(PB): 425–431CrossRefGoogle Scholar
  66. 66.
    Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74(1): 30–38CrossRefGoogle Scholar
  67. 67.
    Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071MathSciNetCrossRefGoogle Scholar
  68. 68.
    Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541CrossRefGoogle Scholar
  69. 69.
    Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Rabczuk T, Ren H. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 2017, 225: 42–48CrossRefGoogle Scholar
  71. 71.
    Ren H, Zhuang X, Rabczuk T. Dual-horizon peridynamics: a stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782MathSciNetCrossRefGoogle Scholar
  72. 72.
    Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2017, 318: 768–782Google Scholar
  73. 73.
    Rabczuk T, Eibl J. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897CrossRefGoogle Scholar
  74. 74.
    Rabczuk T, Belytschko T. Application of meshfree particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1–4): 19–49CrossRefzbMATHGoogle Scholar
  75. 75.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758CrossRefGoogle Scholar
  76. 76.
    Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354CrossRefzbMATHGoogle Scholar
  77. 77.
    Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites Part B: Engineering, 2014, 59: 80–95CrossRefGoogle Scholar
  78. 78.
    Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31CrossRefGoogle Scholar
  79. 79.
    Hamdia K, Silani M, Zhuang X, He P, Rabczuk T. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina
  2. 2.Shanghai SMI Engineering Project Management Co., Ltd.ShanghaiChina

Personalised recommendations