Frontiers of Structural and Civil Engineering

, Volume 13, Issue 1, pp 135–148 | Cite as

Dynamic in-plane transversal normal stresses in the concrete face of CFRD

  • Neftalí Sarmiento-SolanoEmail author
  • Miguel P. Romo
Research Article


Severe earthquakes can induce damages to Concrete Face Rockfill Dams (CFRDs) such as concrete cracking and joint’s water stops distressing where high in-plane transversal normal stresses develop. Although these damages rarely jeopardize the dam safety, they cause large water reservoir leakages that hinder the dam functioning. This issue can be addressed using well know numerical methods; however, given the wide range of parameters involved, it would seem appropriate to develop a simple yet reliable procedure to get a close understanding how their interaction affects the CFRD’s overall behavior. Accordingly, once the physics of the problem is better understood one can proceed to perform a detailed design of the various components of the dam. To this end an easy-to-use procedure that accounts for the dam height effects, valley narrowness, valley slopes, width of concrete slabs and seismic excitation characteristics was developed. The procedure is the dynamic complement of a method recently developed to evaluate in-plane transversal normal stresses in the concrete face of CFRD’s due to dam reservoir filling [1]. Using these two procedures in a sequential manner, it is possible to define the concrete slab in-plane normal stresses induced by the reservoir filling and the action of orthogonal horizontal seismic excitations acting at the same time upstream-downstream and cross river. Both procedures were developed from a data base generated using nonlinear static and dynamic three-dimensional numerical analyses on the same group of CFRD’s. Then, the results were interpreted with the Buckingham Pi theorem and various relationships were developed. In the above reference, the method to evaluate the concrete face in-plane transversal normal stresses caused by the first reservoir filling was reported. In this paper, the seismic procedure is first developed and then through an example the whole method (dam construction, reservoir filling plus seismic loading) of analysis is assessed.


CFR dams dynamic analysis in-plane normal stresses concrete face 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank “Comisión Federal de Electricidad” for the support provided throughout a broad investigation on Concrete Face Rockfill Dams.


  1. 1.
    Sarmiento N, Romo M P. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling. Frontiers of Structural and Civil Engineering, 2018, 12(1): 81–91CrossRefGoogle Scholar
  2. 2.
    Zhang J, Yang Z, Gao X, Tong Z. Lessons from Damages to High Embankment Dams in the May 12, 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, Geotechnical Special Publication, ASCE, 2010; 201: 1–31Google Scholar
  3. 3.
    Wieland M, Houqun C. Lessons learnt from the Wenchuan earthquake. International Water Power & Dam Construction, September 2009, p. 36–40Google Scholar
  4. 4.
    Dakoulas P. Nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons. Soil Dynamics and Earthquake Engineering, ASCE, 2012, 34(1): 11–24CrossRefGoogle Scholar
  5. 5.
    Zou D, Xu B, Kong X, Liu H, Zhou Y. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model. Computers and Geotechnics, 2013, 49: 111–122CrossRefGoogle Scholar
  6. 6.
    Sarmiento N, Romo M P. Efecto de la dirección de la excitación en la respuesta sísmica de la cara de concreto de presas de enrocamiento. IMTA-TC, 2013, IV(2): 91–111 (in Spanish)Google Scholar
  7. 7.
    Romo M P. Cuestiones sísmicas de nuevos tipos de presas. Memorias del coloquio conmemorativo: La Ingeniería Geotécnica a 20 años de “El sismo”. Ciudad de México, 2005, p. 159–163 (in Spanish)Google Scholar
  8. 8.
    Wieland M. Concrete Face Rockfill Dams in Highly Seismic Regions. In: The proceedings of the 1st International Symposium on Rockfill Dams, Chengdu, China, October, 2009Google Scholar
  9. 9.
    Taylor E S. Dimensional analysis for engineers. Clarendon Press, Oxford, 1974, pp 162Google Scholar
  10. 10.
    Itasca Consulting Group. FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimensions. Inc., Minneapolis, Minnesota, 2005Google Scholar
  11. 11.
    Cundall P A, Hart R D. Numerical modeling of discontinua. Engr. Comp, 1992, 9(2): 101–113CrossRefGoogle Scholar
  12. 12.
    Méndez B C. Investigación experimental de la fricción dinámica en una interfaz madera sobre madera. Tesis de maestría, Universidad Nacional Autónoma de México, 2004 (in Spanish)Google Scholar
  13. 13.
    Méndez B C, Romo M P, Botero E. Linearization of rigid body dynamics on frictional interfaces under harmonic loading. Soil Dynamics and Earthquake Engineering, 2012, 32(1): 152–158CrossRefGoogle Scholar
  14. 14.
    Méndez B C, Botero E, Romo M P. A new friction law for sliding rigid blocks under cyclic loading. Soil Dynamics and Earthquake Engineering, 2009, 29(5): 874–882CrossRefGoogle Scholar
  15. 15.
    Alberro J, Macedo G and Gonzalez F. Deformabilidad in situ de los materiales constitutivos de varias presas de tierra y enrocamiento. Informe para la Comisión Federal de Electricidad, Instituto de Ingeniería, Universidad Nacional Autónoma de México. May 1998 (in spanish)Google Scholar
  16. 16.
    Varadarajan A, Sharma K G, Venkatachalam K, Gupta A K. Testing and Modeling Two Rockfill Materials. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206–218CrossRefGoogle Scholar
  17. 17.
    Fu Z, Chen S, Peng C. Modeling Cyclic Behavior of Rockfill Materials in a Framework of Generalized Plasticity. International Journal of Geomechanics, 2014, 14(2): 191–204CrossRefGoogle Scholar
  18. 18.
    Xiao Y, Liu H, Zhang W, Liu H, Yin F, Wang Y. Testing and modeling of rockfill materials: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 415–422CrossRefGoogle Scholar
  19. 19.
    Honkanadavar N P, Sharma K G. Modeling the triaxial behavior of riverbed and blasted quarried rockfill materials using hardening soil model. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 350–365CrossRefGoogle Scholar
  20. 20.
    Chen S, Fu Z, Wei K, Han H. Seismic responses of high concrete face rockfill dams: A case study. Water Science and Engineering, 2016, 9(3): 195–204CrossRefGoogle Scholar
  21. 21.
    Romo M P. Performance of El Infiernillo and La Villita dams including the earthquake of March 14, 1979. Ediciones del Sector Eléctrico, 1980, No 15, CFE, Chapters 6 and 7Google Scholar
  22. 22.
    Romo M P, Villarraga R. Theoretical model for the seismic behavior of dams: El Infiernillo. Series del Instituto de Ingeniería, UNAM, 1989, No 518 (in Spanish)Google Scholar
  23. 23.
    Romo M P, Magaña R. Evaluation of the seismic response and safety of El Infiernillo and La Villita dams. Internal report, Instituto de Ingeniería, UNAM, 1992 (in Spanish)Google Scholar
  24. 24.
    Romo M P. Model development from measured seismic behavior of earth-rockfill dams. Series Investigación y Desarrollo, Instituto de Ingeniería, UNAM, 2002, SID/630Google Scholar
  25. 25.
    Lambe T W. Predictions in soil engineering. Geotechnique, 1973, 23(2): 151–202CrossRefGoogle Scholar
  26. 26.
    Romo MP, Sarmiento N, Martínez S, Merlos J, García S R, Magaña R, Hernández S. Análisis Sísmico de la Cortina Propuesta por CFE para el Proyecto Hidroeléctrico El Cajón y Diseños Geotécnicos Alternos. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, noviembre, 2002 (in Spanish)Google Scholar
  27. 27.
    Romo M P, Sarmiento N and Martínez S. Análisis sísmico de la cortina (enrocamiento con cara de concreto) de la presa La Parota, Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, 2004 (in Spanish)Google Scholar
  28. 28.
    Romo M P, Botero E, Méndez B, Hernández S, Sarmiento N. Análisis sísmico de la cortina y el vertedor del proyecto Hidroeléctrico La Yesca. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, julio, 2006 (in Spanish)Google Scholar
  29. 29.
    Seed H B, Idriss I M. Soil moduli and damping factors for dynamic response analyses, Technical Report EERRC-70-10, University of California, Berkeley, 1970Google Scholar
  30. 30.
    Romo M P. Soil-structure interaction in a random seismic environment. PhD Thesis, University of California, Berkeley, 1976Google Scholar
  31. 31.
    Romo M P, Chen J, Lysmer J, Seed H B. PLUSH. A Computer Program for Probabilistic Finite Element Analysis of Seismic Soil-Structure Interaction. Earthquake Engineering Research Center, Report EERC-77/01, University of California, Berkeley, California, 1980Google Scholar
  32. 32.
    Sarmiento N. Respuesta sísmica tridimensional de presas de enrocamiento con cara de concreto. Tesis doctoral, Universidad Nacional Autónoma de México, 2011 (in Spanish)Google Scholar
  33. 33.
    Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84CrossRefGoogle Scholar
  34. 34.
    Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95CrossRefGoogle Scholar
  35. 35.
    Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535CrossRefGoogle Scholar
  36. 36.
    Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464CrossRefGoogle Scholar
  37. 37.
    Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of EngineeringNational University of MexicoMexico CityMexico

Personalised recommendations