Frontiers of Structural and Civil Engineering

, Volume 13, Issue 2, pp 288–293 | Cite as

Evaluating the material strength from fracture angle under uniaxial loading

  • Jitang FanEmail author
Research Article


The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.


strength fracture mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author, Fan J.T. would like to acknowledge the financial supports from BIT-startup for Young Scholar, Independent Research Project of State Key Laboratory of Explosion Science and Technology with Grant No. QNKT17-03, Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China with Grant No. 11602024. Ms. Liuqing Yang is also acknowledged for her contribution to the computational modeling.


  1. 1.
    Schuh C A, Lund A C. Atomistic basis for the plastic yield criterion of metallic glass. Nature Materials, 2003, 2(7): 449–452CrossRefGoogle Scholar
  2. 2.
    Zhang Z F, Eckert J. Unified tensile fracture criterion. Physical Review Letters, 2005, 94(9): 094301CrossRefGoogle Scholar
  3. 3.
    Qu R T, Zhang Z F. A universal fracture criterion for high-strength materials. Scientific Reports, 2013, 3(1): 1117CrossRefGoogle Scholar
  4. 4.
    Gall K, Sehitoglu H, Chumlyakov Y I, Kireeva I V. Tensioncompression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi. Acta Materialia, 1999, 47(4): 1203–1217CrossRefGoogle Scholar
  5. 5.
    Xie H X, Yu T, Yin F X. Tension-compression asymmetry in homogeneous dislocation nucleation stress of single crystals Cu, Au, Ni and Ni3Al. Materials Science and Engineering A, 2014, 604: 142–147CrossRefGoogle Scholar
  6. 6.
    Revil-Baudard B, Chandola N, Cazacu O, Barlat F. Correlation between swift effects and tension-compression asymmetry in various polycrystalline materials. Journal of the Mechanics and Physics of Solids, 2014, 70: 104–115CrossRefGoogle Scholar
  7. 7.
    Cheng S, Spencer J A, Milligan W W. Strength and tension compression asymmetry in nanostructured and ultrafine-grain metals. Acta Materialia, 2003, 51(15): 4505–4518CrossRefGoogle Scholar
  8. 8.
    Tucker G J, Foiles S M. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations. International Journal of Plasticity, 2015, 65: 191–205CrossRefGoogle Scholar
  9. 9.
    Lund A C, Nieh T G, Schuh C A. Tension-compression strength asymmetry in a simulated nanocrystalline metal. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(1): 012101CrossRefGoogle Scholar
  10. 10.
    Gürses E, El Sayed T. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals. Computational Materials Science, 2010, 50(2): 639–644CrossRefGoogle Scholar
  11. 11.
    Zhang Z F, Eckert J, Schultz L. Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Materialia, 2003, 51(4): 1167–1179CrossRefGoogle Scholar
  12. 12.
    Mukai T, Nieh T G, Kawamura Y, Inoue A, Higashi K. Effect of strain rate on compressive behaviour of a Pd40Ni40P20 bulk metallic glass. Intermetallics, 2002, 10(11-12): 1071–1077CrossRefGoogle Scholar
  13. 13.
    Hartl A M, Jerabek M, Freudenthaler P, Lang R W. Orientationdependent compression/tension asymmetry of short glass fiber reinforced polypropylene: Deformation, damage and failure. Comp. Part A, 2015, 79: 14–22CrossRefGoogle Scholar
  14. 14.
    Hartl A M, Jerabek M, Lang R W. Anisotropy and compression/ tension asymmetry of PP containing soft and hard particles and short glass fibers. Express Polymer Letters, 2015, 9(7): 658–670CrossRefGoogle Scholar
  15. 15.
    Dongare A M, LaMattina B, Rajendran A M. Strengthening behaviour and tension-compression strength-asymmetry in nanocrystalline metal-ceramic composites. Journal of Engineering Materials and Technology, 2012, 134(4): 041003CrossRefGoogle Scholar
  16. 16.
    Kleiser G, Revil-Baudard B, Cazacu O, Pasiliao C L. Experimental characterization and modeling of the anisotropy and tensioncompression asymmetry of polycrystalline molybdenum for strain rates ranging from quasi-static to impact. JOM, 2015, 67(11): 2635–2641CrossRefGoogle Scholar
  17. 17.
    Kim H, Park J, Ha Y, Kim W, Sohn S S, Kim H S, Lee B J, Kim N J, Lee S. Dynamic tension-compression asymmetry of martensitic transformation in austenitic Fe-(0.4, 1.0)C-18Mn steels for cryogenic applications. Acta Materialia, 2015, 96: 37–46CrossRefGoogle Scholar
  18. 18.
    Zhang Q W, Zhang J, Wang Y. Effect of strain rate on the tensioncompression asymmetric responses of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si. Materials & Design, 2014, 61: 281–285CrossRefGoogle Scholar
  19. 19.
    Kurukuri S, Worswick M J, Ghaffari Tari D, Mishra R K, Carter J T. Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet. Philo. Trans. Royal Soc. A, 2014, 372 (2015): 20130216CrossRefGoogle Scholar
  20. 20.
    Dongare A M, Rajendran AM, LaMattina B, ZikryM A, Brenner D W. Tension-compression asymmetry in nanocrystalline Cu: High strain rate vs quasi-static deformation. Computational Materials Science, 2010, 49(2): 260–265CrossRefGoogle Scholar
  21. 21.
    Ulacia I, Dudamell N V, Galvez F, Yi S, Perez-Prado M T, Hurtado I. Mechanical behaviour and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Materialia, 2010, 58(8): 2988–2998CrossRefGoogle Scholar
  22. 22.
    Revil-Baudard B, Cazacu O, Flater P, Chandola N, Alves J L. Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling. Journal of the Mechanics and Physics of Solids, 2016, 88: 100–122MathSciNetCrossRefGoogle Scholar
  23. 23.
    Alves J L, Cazacu O. Micromechanical study of the dilatational response of porous solids with pressure-insensitive matrix displaying tension-compression asymmetry. Euro. J. Mech. A, 2015, 51: 44–54MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Park S H, Lee J H, Moon B G, You B S. Tension-compression yield asymmetry in as-cast magnesium alloy. Journal of Alloys and Compounds, 2014, 617: 277–280CrossRefGoogle Scholar
  25. 25.
    Gravouil A, Moás N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets. Part II: Level set update. International Journal for Numerical Methods in Engineering, 2002, 53(11): 2569–2586Google Scholar
  26. 26.
    Sukumar N, Chopp D L, Moran B. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 2003, 70(1): 29–48CrossRefGoogle Scholar
  27. 27.
    Geniaut S, Galenne E. A simple method for crack growth in mixed mode with X-FEM. International Journal of Solids and Structures, 2012, 49(15-16): 2094–2106CrossRefGoogle Scholar
  28. 28.
    Mi Y, Aliabadi M H. Three-dimensional crack growth simulation using BEM. Computers & Structures, 1994, 52(5): 871–878CrossRefzbMATHGoogle Scholar
  29. 29.
    Cisilino A P, Aliabadi M H. Three-dimensional BEM analysis for fatigue crack growth in welded components. International Journal of Pressure Vessels and Piping, 1997, 70(2): 135–144CrossRefGoogle Scholar
  30. 30.
    Krysl P, Belytschko T. The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks. International Journal for Numerical Methods in Engineering, 1999, 44(6): 767–800CrossRefzbMATHGoogle Scholar
  31. 31.
    Duflot M. A meshless method with enriched weight functions for three-dimensional crack propagation. International Journal for Numerical Methods in Engineering, 2006, 65(12): 1970–2006CrossRefzbMATHGoogle Scholar
  32. 32.
    Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1–16MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143CrossRefGoogle Scholar
  35. 35.
    Song J H, Areias PMA, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893CrossRefzbMATHGoogle Scholar
  36. 36.
    Rao B N, Rahman S. An efficient meshless method for fracture analysis of cracks. Computational Mechanics, 2000, 26(4): 398–408CrossRefzbMATHGoogle Scholar
  37. 37.
    Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343CrossRefzbMATHGoogle Scholar
  38. 38.
    Zhang Z F, He G, Eckert J, Schultz L. Fracture mechanisms in bulk metallic glassy materials. Physical Review Letters, 2003, 91(4): 045505CrossRefGoogle Scholar
  39. 39.
    Fan J T, Wu F F, Zhang Z F, Jiang F, Sun J, Mao S X. Effect of microstructures on the compressive deformation and fracture behaviours of Zr47Cu46Al7 bulk metallic glass composites. Journal of Non-Crystalline Solids, 2007, 353(52-54): 4707–4717CrossRefGoogle Scholar
  40. 40.
    Fan J T, Zhang Z F, Mao S X, Shen B L, Inoue A. Deformation and fracture behaviours of Co-based metallic glass and its composite with dendrites. Intermetallics, 2009, 17(6): 445–452CrossRefGoogle Scholar
  41. 41.
    Chen Y, Dai L H. Nature of crack-tip plastic zone in metallic glasses. International Journal of Plasticity, 2016, 77: 54–74CrossRefGoogle Scholar
  42. 42.
    Tong X, Wang G, Yi J, Ren J L, Pauly S, Gao Y L, Zhai Q J, Mattern N, Dahmen K A, Liaw P K, Eckert J. Shear avalanches in plastic deformation of a metallic glass composite. International Journal of Plasticity, 2016, 77: 141–155CrossRefGoogle Scholar
  43. 43.
    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, Van Swygenhoven H. Ultrahigh strength in nanocrystalline materials under shock loading. Science, 2005, 309(5742): 1838–1841CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina
  2. 2.Advanced Research Institute for Multidisciplinary ScienceBeijing Institute of TechnologyBeijingChina

Personalised recommendations