Frontiers of Structural and Civil Engineering

, Volume 13, Issue 2, pp 380–396 | Cite as

A FEniCS implementation of the phase field method for quasi-static brittle fracture

  • Hirshikesh
  • Sundararajan NatarajanEmail author
  • Ratna Kumar AnnabattulaEmail author
Research Article


In the recent years, the phase field method for simulating fracture problems has received considerable attention. This is due to the salient features of the method: 1) it can be incorporated into any conventional finite element software; 2) has a scalar damage variable is used to represent the discontinuous surface implicitly and 3) the crack initiation and subsequent propagation and branching are treated with less complexity. Within this framework, the linear momentum equations are coupled with the diffusion type equation, which describes the evolution of the damage variable. The coupled nonlinear system of partial differential equations are solved in a ‘staggered’ approach. The present work discusses the implementation of the phase field method for brittle fracture within the open-source finite element software, FEniCS. The FEniCS provides a framework for the automated solutions of the partial differential equations. The details of the implementation which forms the core of the analysis are presented. The implementation is validated by solving a few benchmark problems and comparing the results with the open literature.


phase field method FEniCS brittle fracture crack propagation variational theory of fracture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trevelyan J. Boundary Elements for Engineers: Theory and Applications, vol. 1. Southampton: Computational Mechanics, 1994zbMATHGoogle Scholar
  2. 2.
    Aliabadi M H. A new generation of boundary element methods in fracture mechanics. International Journal of Fracture, 1997, 86(1–2): 91–125CrossRefGoogle Scholar
  3. 3.
    Ooi E T, Song C, Tin-Loi F, Yang Z. Polygon scaled boundary finite elements for crack propagation modelling. International Journal for Numerical Methods in Engineering, 2012, 91(3): 319–342MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495CrossRefzbMATHGoogle Scholar
  5. 5.
    Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: a review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dechaumphai P, Phongthanapanich S, Sricharoenchai T. Combined Delaunay triangulation and adaptive finite element method for crack growth analysis. Acta Mechanica Sinica, 2003, 19(2): 162–171CrossRefGoogle Scholar
  7. 7.
    Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150CrossRefzbMATHGoogle Scholar
  8. 8.
    Wang C, Xu X. An extended phantom node method study of crack propagation of composites under fatigue loading. Composite Structures, 2016, 154: 410–418CrossRefGoogle Scholar
  9. 9.
    Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143CrossRefGoogle Scholar
  10. 10.
    Aranson I S, Kalatsky V A, Vinokur V M. Continuum field description of crack propagation. Physical Review Letters, 2000, 85 (1): 118–121CrossRefGoogle Scholar
  11. 11.
    Marigo J J, Maurini C, Pham K. An overview of the modelling of fracture by gradient damage models. Meccanica, 2016, 51(12): 3107–3128MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Borst R, Verhoosel C V. Gradient damage vs phase-field approaches for fracture: similarities and differences. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 78–94MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bordas S P A, Rabczuk T, Hung N X, Nguyen V P, Natarajan S, Bog T, Quan D M, Hiep N V. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(2324): 1419–1443CrossRefGoogle Scholar
  14. 14.
    Nguyen-Xuan H, Liu G R, Nourbakhshnia N, Chen L. A novel singular ES-FEM for crack growth simulation. Engineering Fracture Mechanics, 2012, 84: 41–66CrossRefGoogle Scholar
  15. 15.
    Nguyen-Xuan H, Liu G R, Bordas S, Natarajan S, Rabczuk T. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods Applied Mechanics and Engineering, 2013, 253: 252–273MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Natarajan S, Bordas S P A, Ooi E T. Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods. International Journal for Numerical Methods in Engineering, 2015, 104(13): 1173–1199MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Francis A, Ortiz-Bernardin A, Bordas S P A, Natarajan S. Linear smoothed polygonal and polyhedral finite elements. International Journal for Numerical Methods in Engineering, 2017, 109(9): 1263–1288MathSciNetCrossRefGoogle Scholar
  18. 18.
    Surendran M, Natarajan S, Bordas S P A, Palani G S. Linear smoothed extended finite element method. International Journal for Numerical Methods in Engineering, 2017, 112(12): 1733–1749MathSciNetCrossRefGoogle Scholar
  19. 19.
    Abaqus. Abaqus documentation. Dassault Systmes Simulia Corp., Provid. RI, USA, 2012Google Scholar
  20. 20.
    Giner E, Sukumar N, Tarancón J E, Fuenmayor F J. An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 2009, 76(3): 347–368CrossRefGoogle Scholar
  21. 21.
    Shi J, Chopp D, Lua J, Sukumar N, Belytschko T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics, 2010, 77(14): 2840–2863CrossRefGoogle Scholar
  22. 22.
    Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758CrossRefGoogle Scholar
  23. 23.
    Bourdin B, Francfort G A, Marigo J J. The Variational Approach to Fracture. Springer Netherlands, 2008CrossRefzbMATHGoogle Scholar
  24. 24.
    Mesgarnejad A, Bourdin B, Khonsari M M. Validation simulations for the variational approach to fracture. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 420–437MathSciNetCrossRefGoogle Scholar
  25. 25.
    Areias P, Rabczuk T, Msekh M A. Phase-field analysis of finitestrain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cahn J W, Hilliard J E. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 1958, 28(2): 258–267Google Scholar
  28. 28.
    Chen L Q, Khachaturyan A G. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metallurgica et Materialia, 1991, 39(11): 2533–2551CrossRefGoogle Scholar
  29. 29.
    Galenko P K, Herlach D M, Funke O, Gandham P. Phase-field modeling of dendritic solidification: verification for the model predictions with latest experimental data. In: Herlach D M, ed. Solidification and Crystallization. Wiley-VCH, 2005, 52–60CrossRefGoogle Scholar
  30. 30.
    Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution. Calphad, 2008, 32(2): 268–294CrossRefGoogle Scholar
  31. 31.
    Francfort G A, Marigo J J. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Borden M J, Verhoosel C V, Scott M A, Hughes T J R, Landis C M. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2012, 217: 77–95MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schlüter A, Willenbücher A, Kuhn C, Müller R. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 2014, 54(5): 1141–1161MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Raina A, Miehe C. A phase-field model for fracture in biological tissues. Biomechanics and Modeling in Mechanobiology, 2016, 15 (3): 479–496CrossRefGoogle Scholar
  35. 35.
    Miehe C, Aldakheel F, Raina A. Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticitydamage theory. International Journal of Plasticity, 2016, 84: 1–32CrossRefGoogle Scholar
  36. 36.
    Ambati M, Gerasimov T, De Lorenzis L. Phase-field modeling of ductile fracture. Computational Mechanics, 2015, 55(5): 1017–1040MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ambati M, Kruse R, De Lorenzis L. A phase-field model for ductile fracture at finite strains and its experimental verification. Computational Mechanics, 2016, 57(1): 149–167MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kuhn C, Müller R. Phase field simulation of thermomechanical fracture. Proceedings in Applied Mathematics and Mechanics, 2009, 9(1): 191–192CrossRefGoogle Scholar
  39. 39.
    Schlüter A, Kuhn C, Müller R, Tomut M, Trautmann C, Weick H, Plate C. Phase field modelling of dynamic thermal fracture in the context of irradiation damage. Continuum Mechanics and Thermodynamics, 2017, 29(4): 977–988MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Msekh M A, Sargado J M, Jamshidian M, Areias P M, Rabczuk T. Abaqus implementation of phase-field model for brittle fracture. Computational Materials Science, 2015, 96: 472–484CrossRefGoogle Scholar
  41. 41.
    Liu G, Li Q, Msekh M A, Zuo Z. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field mode. Computational Materials Science, 2016, 121: 35–47CrossRefGoogle Scholar
  42. 42.
    Molnár G, Gravouil A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elements in Analysis and Design, 2017, 130: 27–38CrossRefGoogle Scholar
  43. 43.
    Nguyen T T, Yvonnet J, Bornert M, Chateau C, Sab K, Romani R, Le Roy R. On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. International Journal of Fracture, 2016, 197(2): 213–226CrossRefGoogle Scholar
  44. 44.
    Ambati M, Gerasimov T, De Lorenzis L. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 2015, 55(2): 383–405MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Alnæs M S, Blechta J, Hake H, Hoansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes M E, Wells G N. The FEniCS Project Version 1.5. Archive of Numerical Software, 2015, 3(100): 9–23Google Scholar
  46. 46.
    Logg A, Mardal K A, Wells G N. Automated Solution of Differential Equations by the Finite Element Method. Berlin: Springer, 2012CrossRefzbMATHGoogle Scholar
  47. 47.
    Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Amor H, Marigo J J, Maurini C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209–1229CrossRefzbMATHGoogle Scholar
  49. 49.
    Moës N, Stolz C, Bernard P E, Chevaugeon N. A level set based model for damage growth: the thick level set approach. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358–380MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Miehe C, Hofacker M, Welschinger F. A phase field model for rateindependent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45): 2765–2778MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Prasad N N V, Aliabadi M H, Rooke D P. Incremental crack growth in thermoelastic problems. International Journal of Fracture, 1994, 66(3): R45–R50CrossRefGoogle Scholar
  52. 52.
    Duflot M. The extended finite element method in thermoelastic fracture mechanics. International Journal for Numerical Methods in Engineering, 2008, 74(5): 827–847MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Bouchard P O, Bay F, Chastel Y. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics and Engineering, 2003, 192(35–36): 3887–3908CrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Integrated Modeling and Simulation Lab, Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations