Advertisement

Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements

  • Bruno Sudret
  • Hung Xuan Dang
  • Marc Berveiller
  • Asmahana Zeghadi
  • Thierry Yalamas
Research Article

Abstract

The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5% macroscopic deformation) is investigated.

Keywords

polycrystalline aggregates crystal plasticity random fields spatial variability correlation structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanguy B. Modélisation de l’essai Charpy par l’approche locale de la rupture — application au cas de l’acier 16MND5 dans le domaine de la transition. Ph.D thesis, École des Mines Paris Tech, 2001Google Scholar
  2. 2.
    Beremin F, Pineau A, Mudry F, Devaux J C, D’Escatha Y, Ledermann P. A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metallurgical Transactions, 1983, 14A(11): 2277–2287CrossRefGoogle Scholar
  3. 3.
    Mathieu J, Berveiller S, Inal K, Diard O. Microscale modelling of cleavage fracture at low temperatures: influence of heterogeneities at the granular scale. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(9–10): 725–737CrossRefGoogle Scholar
  4. 4.
    Mathieu J, Inal K, Berveiller S, Diard O. A micromechanical interpretation of the temperature dependence of Beremin model parameters for French RPV steel. Journal of Nuclear Materials, 2010, 406(1): 97–112CrossRefGoogle Scholar
  5. 5.
    Graham-Brady L, Arwade S, Corr D, Gutiérrez M, Breysse D, Grigoriu M, Zabaras N. Probability and materials: from nano- to macro-scale — a summary. Probabilistic Engineering Mechanics, 2006, 21(3): 193–199CrossRefGoogle Scholar
  6. 6.
    Stefanou G. The stochastic finite element method: past, present and future. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9–12): 1031–1051zbMATHCrossRefGoogle Scholar
  7. 7.
    Xu X F, Chen X. Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element. Mechanics of Materials, 2009, 41(2): 174–186CrossRefGoogle Scholar
  8. 8.
    Graham L, Baxter S. Simulation of local material properties based on moving-window GMC. Probabilistic Engineering Mechanics, 2001, 16(4): 295–305CrossRefGoogle Scholar
  9. 9.
    Liu H, Arwade S, Igusa T. Random composites characterization using a classifier model. Journal of Engineering Mechanics, 2007, 133(2): 129–140CrossRefGoogle Scholar
  10. 10.
    Chung D B, Gutiérrez M A, Borst R. Object-oriented stochastic finite element analysis of fibre metal laminates. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12–16): 1427–1446zbMATHCrossRefGoogle Scholar
  11. 11.
    Chakraborty A, Rahman S. Stochastic multiscale models for fracture analysis of functionally graded materials. Engineering Fracture Mechanics, 2008, 75(8): 2062–2086CrossRefGoogle Scholar
  12. 12.
    Arwade S, Grigoriu M. Probabilistic model for polycrystalline microstructures with application to intergranular fracture. Journal of Engineering Mechanics, 2004, 130(9): 997–1005CrossRefGoogle Scholar
  13. 13.
    Grigoriu M. Nearest neighbor probabilistic model for aluminum polycrystals. Journal of Engineering Mechanics, 2010, 136(7): 821–829CrossRefGoogle Scholar
  14. 14.
    Li Z, Wen B, Zabaras N. Computing mechanical response variability of polycrystalline microstructures through dimensionality reduction techniques. Computational Materials Science, 2010, 49(3): 568–581CrossRefGoogle Scholar
  15. 15.
    Kouchmeshky B, Zabaras N. Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Computational Materials Science, 2010, 48(2): 213–227CrossRefGoogle Scholar
  16. 16.
    Kouchmeshky B, Zabaras N. The effect of multiple sources of uncertainty on the convex hull of material properties of polycrystals. Computational Materials Science, 2009, 47(2): 342–352CrossRefGoogle Scholar
  17. 17.
    Dang H X, Sudret B, Berveiller B. Benchmark of random fields simulation methods and links with identification methods. In: Faber M, Köhler J, Nishijima K. eds. Proceedings of the 11th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP11), Zurich, Switzerland, 2011Google Scholar
  18. 18.
    Stoica P, Moses R. Introduction to spectral analysis. Prentice Hall, 1997zbMATHGoogle Scholar
  19. 19.
    Li J. Spectral estimation. Dep. of Electrical and Computer Engineering - University of Florida, 2005Google Scholar
  20. 20.
    Cramer H, Leadbetter M. Stationary and Related Processes. Wiley & Sons, 1967zbMATHGoogle Scholar
  21. 21.
    Vanmarcke E. Random Fields: Analysis and Synthesis. Cambridge, Massachussets: The MIT Press, 1983zbMATHGoogle Scholar
  22. 22.
    Preumont A. Vibrations aléatoires et analyse spectrale. Presses polytechniques et universitaires romandes, 1990Google Scholar
  23. 23.
    Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431–441zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals. Acta Metallurgica, 1985, 33(9): 1601–1612CrossRefGoogle Scholar
  25. 25.
    Meric L, Cailletaud G. Single crystal modelling for structural calculation: Part 2- F.E. Implementation. Journal of Engineering Materials and Technology, 1991, 113(1): 171–182CrossRefGoogle Scholar
  26. 26.
    Mathieu J. Analyse et modélisation micromécanique du comportement et de la rupture fragile de l’acier 16MND5: prise en compte des hétérogénéités microstructurales. Ph.D thesis, École Nationale Supérieure des Arts et Métiers, 2006Google Scholar
  27. 27.
    Gilbert E. Random subdivisions of space into crystals. Annals of Mathematical Statistics, 1962, 33(3): 958–972zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Barber C, Dobkin D, Huhdanpaa H. The Quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software, 1996, 22(4): 469–483zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Lautensack C, Zuyev S. Random Laguerre tessellations. Advances in Applied Probability, 2008, 40(3): 630–650zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhang P, Balint D, Lin J. Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation. Philosophical Magazine, 2011, 91(36): 4555–4573CrossRefGoogle Scholar
  31. 31.
    Leonardia A, Scardia P, Leonia M. Realistic nano-polycrystalline microstructures: beyond the classical Voronoi tessellation. Philosophical Magazine, 2012, 92(8): 986–1005CrossRefGoogle Scholar
  32. 32.
    Laug P, Borouchaki H. BLSURF-mesh generator for composite parametric surface. Tech. Rep. 0235, INRIA, User’s Manual, 1999Google Scholar
  33. 33.
    Perrin G, Soize C, Duhamel D, Funfschilling C. A posteriori error and optimal reduced basis for stochastic processes defined by a finite set of realizations. SIAM/ASA J. Uncertainty Quantification, 2014, 2(1): 745–762zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Dang H, Sudret B, Berveiller M, Zeghadi A. Identification of random stress fields from the simulation of polycrystalline aggregates. In: Proceedings of the 1st International Conference Computational Modeling of Fracture and Failure of Materials and Structures (CFRAC). Barcelona, Spain, 2011Google Scholar
  35. 35.
    Dang H X, Berveiller M, Zeghadi A, Sudret B, Yalamas T. Introducing stress random fields of polycrystalline aggregates into the local approach to fracture. In: Deodatis G. ed. Proceedings of the 11th International Conference Structural Safety and Reliability (ICOSSAR’2013). New York, USA, 2013Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bruno Sudret
    • 1
  • Hung Xuan Dang
    • 2
  • Marc Berveiller
    • 3
  • Asmahana Zeghadi
    • 3
  • Thierry Yalamas
    • 2
  1. 1.Risk, Safety and Uncertainty QuantificationETH ZurichZurichSwitzerland
  2. 2.Phimeca Engineering S.A.Centre d’affaires du ZénithCournonFrance
  3. 3.EDF R&D, Dept. of Materials and Mechanics of ComponentsSite des RenardièresMoret-sur-Loing CedexFrance

Personalised recommendations