Mortarless structures based on topological interlocking

  • Arcady V. DyskinEmail author
  • Elena Pasternak
  • Yuri Estrin
Research Article


We review the principle of topological interlocking and analyze the properties of the mortarless structures whose design is based on this principle. We concentrate on structures built of osteomorphic blocks — the blocks possessing specially engineered contact surfaces allowing assembling various 2D and 3D structures. These structures are easy to build and can be made demountable. They are flexible, resistant to macroscopic fractures and tolerant to missing blocks. The blocks are kept in place without keys or connectors that are the weakest elements of the conventional interlocking structures. The overall structural integrity of these structures depends on the force imposed by peripheral constraint. The peripheral constraint can be provided in various ways: by an external frame or features of site topography, internal prestressed cables/tendons, or self-weight and is a necessary auxiliary element of the structure. The constraining force also determines the degree of delamination developing between the blocks due to bending and thus controls the overall flexibility of the structure thus becoming a new design parameter.


topological interlocking fragmented structures segmented structures constraint delamination bending stiffness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris H G, Oh K, Hamid A A. Development of new interlocking and mortarless block masonry units for efficient building systems. In: Proceedings of the 6th Canadian Masonry Symposium. Saskatoon, Canada, June 15–17, 1992Google Scholar
  2. 2.
    Anand K B, Ramamurthy K. Development and performance evaluation of interlocking-block masonry. Journal of Architectural Engineering, 2000, 6(2): 45–51CrossRefGoogle Scholar
  3. 3.
    Gilroy D, Goffi E D. Modular interlocking brick system in wide use at BHP. AISE Steel Technology, Jan, 2001Google Scholar
  4. 4.
    Weinhuber K. Building with Interlocking Blocks. German Appropriate Technology Exchange, 1995,
  5. 5.
    Ramamurthy K, Kunhanandan E. Accelerated masonry construction: review and future prospects. Progress in Structural Engineering and Materials, 2004, 6(1): 1–9CrossRefGoogle Scholar
  6. 6.
    Heyman J. The Stone Skeleton. Structural Engineering of Masonry Architecture. Cambridge: Cambridge University Press, 1997Google Scholar
  7. 7.
    Brooks A, Adcock S. Dry Stone Walling. 2nd ed. Doncaster UK: BTCV, 1999Google Scholar
  8. 8.
    Psycharis I N, Papastamatiou D Y, Alexandris A P. Parametric investigation of the stability of classical columns under harmonic and earthquake excitations. Earthquake Engineering & Structural Dynamics, 2000, 29(8): 1093–1109CrossRefGoogle Scholar
  9. 9.
    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. A new concept in design of materials and structures: assemblies of interlocked tetrahedron-shaped elements. Scripta Materialia, 2001, 44(12): 2689–2694CrossRefGoogle Scholar
  10. 10.
    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. Toughening by fragmentation — How topology helps. Advanced Engineering Materials, 2001, 3(11): 885–888CrossRefGoogle Scholar
  11. 11.
    Khor C, Dyskin A V, Pasternak E, et al. Integrity and fracture of plate-like assemblies of topologically interlocked elements. In: Dyskin A V, Hu X Z, Sahouryeh E, eds. Structural Integrity and Fracture. Swets & Zeitlinger, Lisse, 2002, 449–456Google Scholar
  12. 12.
    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. Topological interlocking of platonic solids: a way to new materials and structures. Philosophical Magazine Letters, 2003, 83(3): 197–203CrossRefGoogle Scholar
  13. 13.
    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. A new principle in design of composite materials: reinforcement by interlocked elements. Composites Science and Technology, 2003, 63(3–4): 483–491CrossRefGoogle Scholar
  14. 14.
    Dyskin A V, Estrin Y, Pasternak E, et al. Fracture resistant structures based on topological interlocking with non-planar contacts. Advanced Engineering Materials, 2003, 5(3): 116–119CrossRefGoogle Scholar
  15. 15.
    Estrin Y, Dyskin A V, Pasternak E, et al. Topological interlocking of protective tiles for Space Shuttle. Philosophical Magazine Letters, 2003, 83(6): 351–355CrossRefGoogle Scholar
  16. 16.
    Estrin Y, Dyskin A V, Pasternak E, et al. Negative stiffness of a layer with topologically interlocked elements. Scripta Materialia, 2004, 50(2): 291–294CrossRefGoogle Scholar
  17. 17.
    Dyskin A V, Estrin Y, Kanel-Belov A J, et al. Interlocking properties of buckyballs. Physics Letters [Part A], 2003, 319(3–4): 373–378CrossRefGoogle Scholar
  18. 18.
    Dyskin A V, Estrin Y, Pasternak E, et al. The principle of topological interlocking in extraterrestrial construction. Acta Astronautica, 2005, 57(1): 10–21CrossRefGoogle Scholar
  19. 19.
    Molotnikov A, Estrin Y, Dyskin A V, et al. Percolation mechanism of failure of a planar assembly of interlocked osteomorphic elements. Engineering Fracture Mechanics, 2007, 74(8): 1222–1232CrossRefGoogle Scholar
  20. 20.
    Schaare S, Dyskin A V, Estrin Y, et al. Point loading of assemblies of interlocked cube-shaped elements. International Journal of Engineering Science, 2008, 46(12): 1228–1238MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kanel-Belov A J, Dyskin A V, Estrin Y, et al. Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Mathematical Journal, 2010, arXiv:0812.5089v1Google Scholar
  22. 22.
    Estrin Y, Dyskin A V, Pasternak E. Topological interlocking as a materials design concept. Materials Science and Engineering C, 2011, 31(6): 1189–1194CrossRefGoogle Scholar
  23. 23.
    Goodman R E, Shi G H. Block Theory and its Application to Rock Engineering. Englewood NJ: Prentice-Hall, 1985Google Scholar
  24. 24.
    Glickman M. The G-block system of vertically interlocking paving. In: Proceedings of the Second International Conference on Concrete Block Paving. Delft, April 10–12, 1984, 345–348Google Scholar
  25. 25.
    Robson D A. Deutsches Patent DE-AS 25 54 516, 1978Google Scholar
  26. 26.
    Autruffe A, Pelloux F, Brugger C, et al. Indentation behaviour of interlocked structures made of ice: influence of the friction coefficient. Advanced Engineering Materials, 2007, 9(8): 664–666CrossRefGoogle Scholar
  27. 27.
    Dyskin A V, Caballero A. Orthogonal crack approaching an interface. Engineering Fracture Mechanics, 2009, 76(16): 2476–2485CrossRefGoogle Scholar
  28. 28.
    Shackel B. Design and Construction of Interlocking Pavements. London and New York: Elsevier Applied Science, 1990Google Scholar
  29. 29.
    Dyskin A V, Yong D, Pasternak E, et al. Stresses in topologically interlocking structures: two scale approach. In: Denier J, Finn M D, Mattner T, eds. ICTAM 2008, XXII International Congress of Theoretical and Applied Mechanics. Adelaide, August 24–29, 2008, CD-ROM Proceedings ISBN 978-0-9805142-1-6, 2008, 10134Google Scholar
  30. 30.
    Goodman R E. Introduction to Rock Mechanics. 2nd ed. JohnWiley & Sons, 1989Google Scholar
  31. 31.
    Cherepanov G P. Mechanics of Brittle Fracture. New York: McGraw Hill, 1979zbMATHGoogle Scholar
  32. 32.
    Barnett R L, Hermann P C. Studies in prestressed and segmented brittle structures. IIT Research Institute, Chicago, 1966Google Scholar
  33. 33.
    Backshall D. Bending Stiffness of Interlocking Structures. Honours Dissertation, UWA. 2009Google Scholar
  34. 34.
    Carlesso M, Molotnikov A, Krause T, et al. Enhancement of sound absorption properties using topologically interlocked elements. Scripta Materialia, 2012, 66(7): 483–486CrossRefGoogle Scholar
  35. 35.
    Cooper M R. Deflection and failure modes in dry-stone retaining walls. Ground Engineering, 1986, 19(8): 28–33Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arcady V. Dyskin
    • 1
    Email author
  • Elena Pasternak
    • 2
  • Yuri Estrin
    • 3
  1. 1.School of Civil and Resource EngineeringThe University of Western AustraliaCrawleyAustralia
  2. 2.School of Mechanical and Chemical EngineeringThe University of Western AustraliaCrawleyAustralia
  3. 3.Centre for Advanced Hybrid Materials, Department of Materials EngineeringMonash UniversityClaytonAustralia

Personalised recommendations