Coupled solid-fluid FE-analysis of an embankment dam

  • Michael Pertl
  • Matthias Hofmann
  • Guenter Hofstetter
Research Article

Abstract

A coupled solid-fluid FE-model for partially saturated soils, characterized by modeling the soil as a three-phase material consisting of a deformable soil skeleton and the fluid phases water and air, is reviewed briefly. As a constitutive model for the soil skeleton, the well-known Barcelona Basic model (BBM) is employed, which is formulated in terms of net stress and matric suction. For the BBM, a computationally efficient return mapping algorithm is proposed, which only requires the solution of a scalar nonlinear equation at the integration point level. The coupled FE-model is applied to the coupled transient numerical simulation of the water flow and the deformations and stresses in an embankment dam.

Keywords

multi-phase model unsaturated soil model Barcelona Basic model (BBM) return mapping algorithm embankment dam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carrere A J, Brunet C, Fry J J, Barbera L, Bani A, Mazza G, Griffths D V, Torres R L, Lane P A. Embankment dams — stability analysis of a homogeneous embankment dam. In: Proceedings of ICOLD Fifth Benchmark Workshop. Denver: ICOLD International Commission of Large Dams, 1999Google Scholar
  2. 2.
    Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils. Geotechnique, 1990, 40(3): 405–430CrossRefGoogle Scholar
  3. 3.
    Lewis R W, Schreer B A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. 2nd ed. New York: John Wiley & Sons, 1998MATHGoogle Scholar
  4. 4.
    van Genuchten M Th, Nielsen D R. On describing and predicting the hydraulic properties of unsaturated soils. Annales Geophysicae, 1985, 3(5): 615–628Google Scholar
  5. 5.
    Fredlund D G, Rahardjo H. Soil Mechanics for Unsaturated Soils. New York: John Wiley & Sons, 1993Google Scholar
  6. 6.
    Hochgürtel T. Numerische Untersuchung zur Beurteilung der Standsicherheit der Ortsbrust beim Einsatz von Druckluft zur Wasserhaltung im schildvorgetrriebenen Tun-nelbau. Dissertation for the Doctoral Degree. Aachen: Rheinisch-Westf alische Technische Hochschule Aachen, 1998Google Scholar
  7. 7.
    Houlsby G T. The work input to an unsaturated granular material. Geotechnique, 1997, 47(1): 193–196CrossRefGoogle Scholar
  8. 8.
    Borja R I. Cam-clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 2004, 193(48–51): 5301–5338MATHCrossRefGoogle Scholar
  9. 9.
    Schrefler B A. Mechanics and thermodynamics of saturated/ unsaturated porous materials and quantitative solutions. Applied Mechanics Reviews, 2002, 55(4): 351–388CrossRefGoogle Scholar
  10. 10.
    Terzaghi K. The shear resistance of saturated soils. In: Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. Cambridge: Harvard University Press, 1936, 1: 54–56Google Scholar
  11. 11.
    Hickman R J, Gutierrez M. An internally consistent integration method for critical state models. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(3): 227–248MATHCrossRefGoogle Scholar
  12. 12.
    Laigle F, Poulain D, Magnin P. Numerical simulation of La Ganne dam behaviour by a three phases approach. In: Alonso E E, Delage P, eds. Unsaturated Soils/Sol Non Saturés. Proceeding of the 1st International Conference on Unsaturated Soils, UNSAT 95. Rotterdam: Balkema A A, 1995, 1101–1108Google Scholar
  13. 13.
    Gens A, Alonso E E, Delage P. Unsaturated soil engineering practice. In: Geotechnical Special Publication, chapter Computer Modeling and Application to Unsaturated Soils. Washington: American Society of Civil Engineers, 1997, 68: 299–330Google Scholar
  14. 14.
    Kohler R. Numerical modelling of partially saturated soils in the context of a three-phase FE-formulation. Dissertation for the Doctoral Degree. Innsbruck: Leopold-Franzens-Universität Innsbruck, 2006Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Pertl
    • 1
  • Matthias Hofmann
    • 1
  • Guenter Hofstetter
    • 1
  1. 1.Insitute of Basic Sciences in Civil EngineeringUniversity of InnsbruckInnsbruckAustria

Personalised recommendations