Continuous modeling of soil morphology —thermomechanical behavior of embankment dams

  • Bettina AlbersEmail author
  • Krzysztof Wilmanski
Research Article


Macroscopic modeling of soils is based on a number of properties that refer to the mesoscopic morphology. The most fundamental parameters of this art are: 1) coupling parameters between partial stresses of components and deformations of components, 2) porosities, 3) saturation, and 4) permeability and diffusivity, tortuosity.

The main aim of this paper is to present in juxtaposition continuous one-, two-, and three-component models of geomaterials appearing in construction of embankment dams. In particular, the above mentioned features, especially saturation with water and seepage problems, modeling of fluidization yielding piping, and generalizations of the Darcy law and changes of porosity, are presented.


thermomechanical modeling soil morphology saturation porosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaníček M, Vaníček I. Earth Structures in Transport, Water and Environmental Engineering (Geotechnical, Geological, and Earthquake Engineering). New York: Springer, 2008Google Scholar
  2. 2.
    Bowen R M. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1980, 18(9):1129–1148zbMATHCrossRefGoogle Scholar
  3. 3.
    Muir Wood D. Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press, 1991Google Scholar
  4. 4.
    Muir Wood D. Geotechnical Modelling. Oxfordshire: Spon Press, 2004CrossRefGoogle Scholar
  5. 5.
    Lancellotta R. Geotechnical Engineering. Rotterdam: Balkema A A, 1995Google Scholar
  6. 6.
    Bauer E. Constitutive modeling of critical states in hypoplasticity. In: Pande, Pietruszczak, eds. Proceedings of the Fifth International Symposium on Numerical Models in Geomechanics. Rotterdam: Balkema A A, 1995, 1520Google Scholar
  7. 7.
    von Wolffersdorff P A. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesivefrictional Materials, 1996, 1(3):251–271CrossRefGoogle Scholar
  8. 8.
    Kolymbas D. A ratedependent constitutive equation for soils. Mechanics Research Communications, 1977, 4(6):367–372CrossRefGoogle Scholar
  9. 9.
    Kolymbas D. Introduction to Hypoplasticity. Rotterdam: A A Balkema, 2000Google Scholar
  10. 10.
    Bauer E, Tantono S F, Zhu Y, Liu S, Kast K. Modeling rheological properties of materials for rockfill dams. In: Zhu Y, et al, eds, Long Time Effects and Seepage Behavior of Dams. Nanjing: Hohai University Press, 2008, 73–80Google Scholar
  11. 11.
    Goodman M A, Cowin S C. A continuum theory for granular materials. Archive for Rational Mechanics and Analysis, 1972, 44(4):249–266zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wang Y, Hutter K. A constitutive model of multiphase mixtures and its applications in shearing flows of saturated solid-fluid mixtures. Granular Matter, 1999, 1(4):163–181CrossRefGoogle Scholar
  13. 13.
    Wang Y, Hutter K. Shearing flows in a Goodman-Cowin type granular material-theory and numerical results. Particulate Science and Technology, 1999, 17(1–2):97–124CrossRefGoogle Scholar
  14. 14.
    Kirchner N. Thermodynamics of Structured Granular Materials. Dissertation for the Doctoral Degree. Berichte aus der Thermodynamik. Aachen: Shaker Verlag, 2001Google Scholar
  15. 15.
    Darcy H. Les Fontaines Publiques de la Ville de Dijon. Paris: Dalmont, 1856Google Scholar
  16. 16.
    von Terzaghi K. Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig: Deuticke, 1925zbMATHGoogle Scholar
  17. 17.
    Bear J. Dynamics of Fluids in Porous Media. Dover: Dover Publication, 1972zbMATHGoogle Scholar
  18. 18.
    Forchheimer P. Wasserbewegung durch Boden. Z Ver Deutsch Ing, 1901, 45:1782–1788Google Scholar
  19. 19.
    Wilhelm T, Wilmanski K. On the onset of flow instabilities in granular media due to porosity inhomogeneities. International Journal of Multiphase Flow, 2002, 28(12):1929–1944zbMATHCrossRefGoogle Scholar
  20. 20.
    Wilmanski K. A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials. Soil Dynamics and Earthquake Engineering, 2006, 26(6–7):509–536CrossRefGoogle Scholar
  21. 21.
    Gassmann F. Über die Elastizität poröser Medien. In: Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96. 1951, 1:1–23MathSciNetGoogle Scholar
  22. 22.
    Bowen R M. Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 1982, 20(6):697–735zbMATHCrossRefGoogle Scholar
  23. 23.
    Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures. In: Truesdell C, ed. Rational Thermodynamics, Berlin: Springer, 1984Google Scholar
  24. 24.
    Faria S H, Hutter K, Kirchner N, Wang Y. Continuum Description of Granular Materials. Heidelberg: Springer, 2009Google Scholar
  25. 25.
    Wilmanski K. A Thermodynamic model of compressible porous materials with the balance equation of porosity. Transport in Porous Media, 1998, 32(1):21–47CrossRefGoogle Scholar
  26. 26.
    Wilmanski K. Thermomechanics of Continua. Heidelberg: Springer, 1998zbMATHGoogle Scholar
  27. 27.
    Wilmanski K. Continuum Thermodynamics. Part I: Foundations. Singapore: World Scientific, 2008zbMATHCrossRefGoogle Scholar
  28. 28.
    Albers B. Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Aachen: Shaker Verlag, 2010Google Scholar
  29. 29.
    Wilmanski K. On microstructural tests for poroelastic materials and corresponding Gassmanntype relations. Geotechnique, 2004, 54(9):593–603CrossRefGoogle Scholar
  30. 30.
    Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957, 24:594–601MathSciNetGoogle Scholar
  31. 31.
    Epstein N. On tortuosity and the tortuosity factor in ow and diffusion through porous media. Chemical Engineering Science, 1989, 44(3):777–779CrossRefGoogle Scholar
  32. 32.
    Kozeny J. Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung und Anwendung auf die Bewässerung). Sber Akad Wiss Wien, 1927, 136 (Abt. IIa): 271–306Google Scholar
  33. 33.
    Biot MA. Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range. Journal of the Acoustical Society of America, 1956, 28(2):168–178CrossRefMathSciNetGoogle Scholar
  34. 34.
    Wilmanski K. Tortuosity and objective relative accelerations in the theory of porous materials. Proceedings of the Royal Society, Mathematical, Physical and Engineering Sciences, 2005, 461(2057):1533–1561zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Wesselingh J A, Krishna R. Mass Transfer in Multicomponent Mixtures. Delft: Delft University Press, 2000Google Scholar
  36. 36.
    Ruggeri T, Simič S. Mixture of gases with multi-temperature: Maxwellian iteration. In: Ruggeri T, Sammartino M, eds. Asymptotic Methods in Nonlinear Wave Phenomena. New Jersey: World Scientific, 2007, 186–194CrossRefGoogle Scholar
  37. 37.
    Ieşan D. On a theory of micromorphic elastic solids with microtemperatures. Journal of Thermal Stresses, 2001, 24(8):737–752CrossRefMathSciNetGoogle Scholar
  38. 38.
    Helmig R. Multiphase Flow and Transport Processes in the Subsurface. Heidelberg: Springer, 1997Google Scholar
  39. 39.
    Hartge K H, Horn R. Einführung in die Bodenphysik. Stuttgart: Schweizerbart, 1999Google Scholar
  40. 40.
    Schick P. Ein quantitatives Zwei-Komponenten-Modell der Porenwasser-Bindekräfte in teilgesättigten Böden. Habilitation Thesis. München: Universität der Bundeswehr, 2003Google Scholar
  41. 41.
    Brooks R H, Corey A T. Hydraulic properties of porous media. In: Hydrology Papers, Vol. 3. Fort Collins: Colorado State University, 1964Google Scholar
  42. 42.
    van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America, 1980, 44:892–898CrossRefGoogle Scholar
  43. 43.
    Farouki O T. Ground thermal properties. In: Krzewinski T G, Tart R G, eds. Thermal Design Considerations in Frozen Ground Engineering. New York: ASCE, 1985:186–203Google Scholar
  44. 44.
    Gontaszewska A. Thermophysical Properties of Soils in Vicinity of Zielona Gora in Relation to Soil Frost Depth. Dissertation for the Doctoral Degree. Poznan: University of Poznan, 2006Google Scholar
  45. 45.
    Chen S X. Thermal conductivity of sands. Heat and Mass Transfer, 2008, 44(10):1241–1246CrossRefGoogle Scholar
  46. 46.
    Mattsson H, Hellström J G I, Lundström S. On internal erosion in embankment dams: a literature survey of the phenomenon and the prospect to model it numerically. Report No. 2008: I14, 2008Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Geotechnical Engineering and Soil MechanicsTechnical University of BerlinBerlinGermany
  2. 2.Institute of Building EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations