Advertisement

Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

  • Shammya Afroze
  • AfizulHakem Karim
  • Quentin Cheok
  • Sten Eriksson
  • Abul K. AzadEmail author
Review Article
  • 26 Downloads

Abstract

Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

Keywords

double perovskites electrode materials hydrocarbon fuel solid oxide fuel cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The University Graduate Scholarship (UGS) of Universiti Brunei Darussalam is gratefully acknowledged. This work was supported by the project No. UBD/RSCH/URC/RG(6)2018/002.

References

  1. 1.
    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209CrossRefGoogle Scholar
  2. 2.
    Andújar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322CrossRefGoogle Scholar
  3. 3.
    Abdalla A M, Hossain S, Petra P M, Ghasemi M, Azad A K. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018, 12(1): 1–24CrossRefGoogle Scholar
  4. 4.
    Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627CrossRefGoogle Scholar
  5. 5.
    Wang S, Jiang S P. Prospects of fuel cell technologies. National Science Review, 2017, 4(2): 163–166CrossRefGoogle Scholar
  6. 6.
    Garche J, Jurissen L. Applications of fuel cell technology: status and perspectives. Electrochemical Society Interface, 2015, 24(2): 39–43CrossRefGoogle Scholar
  7. 7.
    U.S. Department of Energy. Fuel cell technologies office. 2015, available at energy.gov website
  8. 8.
    Johnson Matthey P L C. Fuel cell applications-fuel cell today. 2018-11-22, available at fuelcelltoday.com webite
  9. 9.
    Financial Times. Japan is betting future cars will use hydrogen fuel cells. 2018-03-27, available at ft.com websiteGoogle Scholar
  10. 10.
    Nissan Motor Corporation. Runnig on e-Bio: Nissan’s solid oxide fuel cell system. 2016-06-14, available at nissan-global.com website
  11. 11.
    INSIDEEVS. Navigant: fuel cell vehicle sales to exceed 228000 units by 2024. 2015-12-27, available at insideevs.com website
  12. 12.
    Ang S M C, Fraga E S, Brandon N P, Samsatli N J, Brett D J L. Fuel cell systems optimisation-methods and strategies. International Journal of Hydrogen Energy, 2011, 36(22): 14678–14703CrossRefGoogle Scholar
  13. 13.
    Stambouli A B, Traversa E, Stambouli A. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455CrossRefGoogle Scholar
  14. 14.
    Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Reviews on solid oxide fuel cell technology. Engineering Journal (New York), 2009, 13(1): 65–84Google Scholar
  15. 15.
    Minh N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1–4): 271–277CrossRefGoogle Scholar
  16. 16.
    Bao C, Wang Y, Feng D L, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science, 2018, 66: 83–140CrossRefGoogle Scholar
  17. 17.
    Rits V, Kypreos S, Wokaun A. Evaluating the diffusion offuel-cell cars in the China markets. IATSS Research, 2004, 28(1): 34–46CrossRefGoogle Scholar
  18. 18.
    Venture Radar. SOFC | Venture Radar Search. 2018, available at ventureradar.com website
  19. 19.
    Business Wire.Top emerging trends in the global solid oxide fuel cell market| Technavio. 2018-04-04, available at businesswire.com website
  20. 20.
    Markets and Markets. Solid oxide fuel cell market by type (planar and tubular), application (power generation, combined heat & power, and military), end-use (data centers, commercial & retail, and APU), region (north America, Asia Pacific, and Europe)-global forecast to 2025. 2017, available at marketsandmarkets.com website
  21. 21.
    Abdalla A M, Hossain S, Zhou J, Petra PMI, Erikson S, Savaniu C D, Irvine J T S, Azad A K. NdBaMn2O5+δ layered perovskite as an active cathode material for solid oxide fuel cells. Ceramics International, 2017, 43(17): 15932–15938CrossRefGoogle Scholar
  22. 22.
    Taroco H A, Santos J A F, Domingues R Z, Matencio T. Ceramic materials for solid oxide fuel cells. 2011, available at intechopen.com website
  23. 23.
    Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209CrossRefGoogle Scholar
  24. 24.
    Liu Q, Dong X, Xiao G, Zhao F, Chen F. A Novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478–5482CrossRefGoogle Scholar
  25. 25.
    Huang Y H. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257CrossRefGoogle Scholar
  26. 26.
    Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1): 17–27CrossRefGoogle Scholar
  27. 27.
    Zhang L, He T. Performance of double-perovskite Sr2 xSmxMgMoO6 δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359CrossRefGoogle Scholar
  28. 28.
    Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352CrossRefGoogle Scholar
  29. 29.
    Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152–153: 405–410CrossRefGoogle Scholar
  30. 30.
    Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170–173CrossRefGoogle Scholar
  31. 31.
    Han D, Liu X, Zeng F, Qian J, Wu T, Zhan Z. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2(1): 462CrossRefGoogle Scholar
  32. 32.
    Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745): 649–651CrossRefGoogle Scholar
  33. 33.
    Park S, Vohs J, Gorte R. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267CrossRefGoogle Scholar
  34. 34.
    McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 2004, 104(10): 4845–4866CrossRefGoogle Scholar
  35. 35.
    Abdalla A M, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368CrossRefGoogle Scholar
  36. 36.
    Safran. Fuel cells: green energy on board. 2018-11-22, available at safran-group.com website
  37. 37.
    Reza M S, Ahmed A, Caesarendra W, Abu Bakar M S, Shams S, Saidur R, Aslfattahi N, Azad A K. Acacia holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering Multidisciplinary Digital Publishing Institute, 2019, 6(2): 33Google Scholar
  38. 38.
    Justin Fitzgerald and Nancy O’Bryan. NASA- Fuel cells: a better energy source for earth and space. 2005-11-02, available at nasa.gov website
  39. 39.
    Singhal S. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313CrossRefGoogle Scholar
  40. 40.
    Tao S W, Irvine J T S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials, 2006, 18(12): 1581–1584CrossRefGoogle Scholar
  41. 41.
    Radenahmad N, Afif A, Petra P I, Rahman S M H, Eriksson S G, Azad A K. Proton-conducting electrolytes for direct methanol and direct urea fuel cells-a state-of-the-art review. Renewable & Sustainable Energy Reviews, 2016, 57: 1347–1358CrossRefGoogle Scholar
  42. 42.
    Malavasi L, Fisher C A J, Islam M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010, 39(11): 4370–4387CrossRefGoogle Scholar
  43. 43.
    Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764CrossRefGoogle Scholar
  44. 44.
    Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y M. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534–546CrossRefGoogle Scholar
  45. 45.
    Cologna M. Advances in the production of planar and micro-tubular solid oxide fuel cells. Dissertation for the Doctoral Degree. Trento: University of TrentoGoogle Scholar
  46. 46.
    Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455CrossRefGoogle Scholar
  47. 47.
    Hatchwell C E, Sammes N M, Kendall K. Cathode current-collectors for a novel tubular SOFC design. Journal of Power Sources, 1998, 70(1): 85–90CrossRefGoogle Scholar
  48. 48.
    National Energy Technology Laboratory. Solid oxide fuel cell. 2018-11-26, available at netl.doe.gov website
  49. 49.
    Vaillant unveils wall-mounted CHP unit, using staxera SOFC. Fuel Cells Bulletin, 2011, 5: 4Google Scholar
  50. 50.
    Kupecki J. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40(35): 12009–12022CrossRefGoogle Scholar
  51. 51.
    SOLID power. For private households-SOLID power. 2018-11-26, available at solidpower.com website
  52. 52.
    Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018CrossRefGoogle Scholar
  53. 53.
    Cava R J, Batlogg B, Krajewski J J, Farrow R, Rupp L W, White A E, Short K, Peck W F, Kometani T. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature, 1988, 332 (6167): 814–816CrossRefGoogle Scholar
  54. 54.
    Zhang Z, Li J, Zhou W, Yang C, Cao Q, Wang D, Du Y. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceramics International, 2018, 44(4): 3760–3764CrossRefGoogle Scholar
  55. 55.
    Afroze S, Binti Haji Bakar A N, Reza M S, Salam M A. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. IET Conference Publications, 2018Google Scholar
  56. 56.
    Schlom D G, Chen L Q, Pan X, Schmehl A, Zurbuchen M A. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 2008, 91(8): 2429–2454CrossRefGoogle Scholar
  57. 57.
    Locock A J, Mitchell R H. Perovskite classification: an excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup. Computers & Geosciences, 2018, 113: 106–114CrossRefGoogle Scholar
  58. 58.
    Li R, Yu C, Shen S. Partial oxidation of methane to syngas using lattice oxygen of La1 xSrxFeO3 perovskite oxide catalysts instead of molecular oxygen. Journal of Natural Gas Chemistry, 2002, 11: 137–144Google Scholar
  59. 59.
    El-Ads E. Perovskite nanomaterials-synthesis, characterization, and applications. InTech, 2016: 107–151Google Scholar
  60. 60.
    Azad A K. Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A 2FeBO6 (A = Ca, Sr, Ba, La; B = W, Mo, Cr). 2004, available at lib.ugent.be website
  61. 61.
    Azad A K, Mellergård A, Eriksson S G, Ivanov S A, Eriksen J, Rundlöf H. Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6. Applied Physics A: Materials Science & Processing, 2002, 74(Sup. 1): s763–s765CrossRefGoogle Scholar
  62. 62.
    Azad A, Eriksson S G. Formation of a cubic Sr2MnWO6 phase at elevated temperature: a neutron powder diffraction study. Solid State Communications, 2003, 126(9): 503–508CrossRefGoogle Scholar
  63. 63.
    Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A 2MnMoO6 (A = Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82CrossRefGoogle Scholar
  64. 64.
    Azad A K, Ivanov S, Eriksson S G, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic properties of the double perovskite Sr2MnWO6. Journal of Magnetism and Magnetic Materials, 2001, 237(2): 124–134CrossRefGoogle Scholar
  65. 65.
    Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Nuclear and magnetic structure of Ca2MnWO6: a neutron powder diffraction study. Materials Research Bulletin, 2001, 36(13–14): 2485–2496CrossRefGoogle Scholar
  66. 66.
    Azad A K, Eriksson S G, Ivanov S A, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic characterisation of the double perovskites AA′MnWO6 (AA′ = Ba2, SrBa, Sr2, SrCa and Ca2). Ferroelectrics, 2002, 269(1): 105–110CrossRefGoogle Scholar
  67. 67.
    Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257CrossRefGoogle Scholar
  68. 68.
    Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on {H2} and {CH4} fuels. Journal of Power Sources, 2011, 196(4): 1738–1743CrossRefGoogle Scholar
  69. 69.
    Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8071–8074CrossRefGoogle Scholar
  70. 70.
    Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Pérez-Coll D, Aranda MAG, Núñez P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6−δ anode. Materials Research Bulletin, 2008, 43(8–9): 2441–2450CrossRefGoogle Scholar
  71. 71.
    Bernuy-Lopez C, Allix M, Bridges C A, Claridge J B, Rosseinsky M J. Sr2MgMoO6−δ: structure, phase stability, and cation site order control of reduction. Chemistry of Materials, 2007, 19(5): 1035–1043CrossRefGoogle Scholar
  72. 72.
    Vasala S, Lehtimäki M, Huang Y H, Yamauchi H, Goodenough J B, Karppinen M. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6−δ (M = Mg, Mn, Fe, Co, Ni, Zn). Journal of Solid State Chemistry, 2010, 183(5): 1007–1012CrossRefGoogle Scholar
  73. 73.
    Azizi F, Kahoul A, Azizi A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484 (1–2): 555–560CrossRefGoogle Scholar
  74. 74.
    Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Synthesis and characterization of Sr2MgMoO6−δ: an anode material for the solid oxide fuel cell. Journal of the Electrochemical Society, 2006, 153(7): A1266–A1272CrossRefGoogle Scholar
  75. 75.
    Xie Z, Zhao H, Du Z, Chen T. Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. Journal of Physical Chemistry, 2012, 116: 9734–9743Google Scholar
  76. 76.
    Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38(10): 4108–4115CrossRefGoogle Scholar
  77. 77.
    Xie Z, Zhao H, Chen T, Zhou X, Du Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(12): 7257–7264CrossRefGoogle Scholar
  78. 78.
    Goldschmidt V M. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485CrossRefGoogle Scholar
  79. 79.
    Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32(5): 751–767CrossRefGoogle Scholar
  80. 80.
    Rebaza A V G, Toro C E D, Téllez D A L, Roa-Rojas J. Electronic structure of the double perovskite Ba2Er(Nb,Sb)O6. Journal of Physics: Conference Series, 2014, 480: 012041Google Scholar
  81. 81.
    Fu W T, IJdo D J W. X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln = La, Pr, Nd and Sm). Journal of Solid State Chemistry, 2005, 178(7): 2363–2367CrossRefGoogle Scholar
  82. 82.
    Gopalakrishnan J, Chattopadhyay A, Ogale SB, Venkatesan T, Greene R L, Millis A J, Ramesha K, Hannoyer B, Marest G. Metallic and nonmetallic double perovskites: a case study of A 2FeReO6 (A = Ca, Sr, Ba). 2000, 62(14): 9538–9542Google Scholar
  83. 83.
    Davis M J, Mugavero S J III, Glab K I, Smith M D, zur Loye H C. The crystal growth and characterization of the lanthanide-containing double perovskites Ln 2NaIrO6 (Ln = La, Pr, Nd). Solid State Sciences, 2004, 6(5): 413–417CrossRefGoogle Scholar
  84. 84.
    Yamamura K, Wakeshima M, Hinatsu Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M =W, Re, Os). Journal of Solid State Chemistry, 2006, 179(3): 605–612CrossRefGoogle Scholar
  85. 85.
    Gens R, Fuger J, Morss L R, Williams C W. Thermodynamics of actinide perovskite-type oxides III. Molar enthalpies of formation of B2MAnO6 (M = Mg, Ca, or Sr; An = U, Np, or Pu) and M 3PuO6 (M = Ba or Sr). Journal of Chemical Thermodynamics, 1985, 17 (6): 561–573CrossRefGoogle Scholar
  86. 86.
    Fu W T, IJdo D J W. Re-examination of the structure of Ba2MIrO6 (M= La, Y): space group revised. Journal of Alloys and Compounds, 2005, 394(1–2): 10–13Google Scholar
  87. 87.
    Bharti C, Sinha T P. Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sciences, 2010, 12(4): 498–502CrossRefGoogle Scholar
  88. 88.
    Shaheen R, Bashir J. Ca2CoNbO6: a new monoclinically distorted double perovskite. Solid State Sciences, 2010, 12(8): 1496–1499CrossRefGoogle Scholar
  89. 89.
    Gemmill W R, Smith M D, zur Loye H C. Synthesis, structural characterization, and magnetic properties of the antiferromagnetic double perovskites Ln 2LiOsO6 (Ln = La, Pr, Nd, Sm). Journal of Solid State Chemistry, 2006, 179(6): 1750–1756CrossRefGoogle Scholar
  90. 90.
    Zhang Y, Ji V. Half-metallic ferromagnetic nature of the double perovskite Pb2FeMoO6 from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1116–1121CrossRefGoogle Scholar
  91. 91.
    Mugavero S J III, Smith M D, zur Loye H C. The crystal growth and magnetic properties of Ln 2LiIrO6 (Ln = La, Pr, Nd, Sm, Eu). Journal of Solid State Chemistry, 2005, 178(1): 200–206Google Scholar
  92. 92.
    Zhou Q, Kennedy B J, Howard C J, Elcombe M M, Studer A J. Structural phase transitions in A 2 xSrxNiWO6 (A = Ca or Ba, 0⩽x⩽2) double perovskites. Chemistry of Materials, 2005, 17 (21): 5357–5365CrossRefGoogle Scholar
  93. 93.
    Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A = Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82CrossRefGoogle Scholar
  94. 94.
    Strandbakke R, Cherepanov V A, Zuev A Y, Tsvetkov D S, Argirusis C, Sourkouni G, Prünte S, Norby T. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120–132CrossRefGoogle Scholar
  95. 95.
    Philipp J B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6. Physical Review. B, 2003, 68(14): 144431CrossRefGoogle Scholar
  96. 96.
    Popov G, Greenblatt M, Croft M. Large effects of A-site average cation size on the properties of the double perovskites Ba2−xSrx MnReO6:a d 5d 1 system. Physical Review. B, 2003, 67(2): 024406CrossRefGoogle Scholar
  97. 97.
    Westerburg W, Lang O, Ritter C, Felser C, Tremel W, Jakob G. Magnetic and structural properties of the double-perovskite Ca2FeReO6. Solid State Communications, 2002, 122(3–4): 201–206CrossRefGoogle Scholar
  98. 98.
    Falcón H, Barbero J A, Araujo G, Casaisc M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A 2FeMoO6−δ (A = Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45CrossRefGoogle Scholar
  99. 99.
    Retuerto M, Alonso J A, García-Hernández M, Martínez-Lope M J. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6. Solid State Communications, 2006, 139 (1): 19–22CrossRefGoogle Scholar
  100. 100.
    Hu R, Ding R, Chen J, Hu J, Zhang Y. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catalysis Communications, 2012, 21: 38–41CrossRefGoogle Scholar
  101. 101.
    Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018CrossRefGoogle Scholar
  102. 102.
    Parfitt D, Chroneos A, Tarancón A, Kilner J A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. Journal of Materials Chemistry, 2011, 21(7): 2183–2186CrossRefGoogle Scholar
  103. 103.
    Presto S, Kumar P, Varma S, Viviani M, Singh P. Electrical conductivity of NiMo-based double perovskites under SOFC anodic conditions. International Journal of Hydrogen Energy, 2018, 43(9): 4528–4533CrossRefGoogle Scholar
  104. 104.
    Fu D, Jin F, He T. A-site calcium-doped Pr1−xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141CrossRefGoogle Scholar
  105. 105.
    Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, 22(3): 197–233CrossRefGoogle Scholar
  106. 106.
    Serrate D, De Teresa J M, Algarabel P A, Marquina C, Blasco J, Ibarra M R, Galibert J. Magnetoelastic coupling in Sr2(Fe1−xCrx) ReO6 double perovskites. Journal of Physics Condensed Matter, 2007, 19(43): 436226CrossRefGoogle Scholar
  107. 107.
    Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2−xCuxO5+δ at elevated temperatures. Solid State Ionics, 2015, 274: 17–23CrossRefGoogle Scholar
  108. 108.
    Niu B, Jin F, Yang X, Feng T, He T. Resisting coking and sulfur poisoning of double perovskite. 2018, 43(6): 3280–3290Google Scholar
  109. 109.
    Kim J H, Manthiram A. Layered NdBaCo2−xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28): 7551–7557CrossRefGoogle Scholar
  110. 110.
    Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003CrossRefGoogle Scholar
  111. 111.
    Battle P D, Jones C W. The crystal and magnetic structures of Sr2LuRuO6,Ba2YRuO6, and Ba2LuRuO6. Journal of Solid State Chemistry, 1989, 78(1): 108–116CrossRefGoogle Scholar
  112. 112.
    Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Materials Research Bulletin, 2001, 36(12): 2215–2228CrossRefGoogle Scholar
  113. 113.
    Azad A K, Eriksson S G, Mellergård A, Ivanov S A, Eriksen J, Rundlöf H. A study on the nuclear and magnetic structure of the double perovskites A 2FeWO6 (A = Sr, Ba) by neutron powder diffraction and reverse Monte Carlo modeling. Materials Research Bulletin, 2002, 37(11): 1797–1813CrossRefGoogle Scholar
  114. 114.
    Anderson M T, Poeppelmeier K R. La2CuSnO6: a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482CrossRefGoogle Scholar
  115. 115.
    Glazer A M. The classification of tilted octahedra in perovskites. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384–3392CrossRefGoogle Scholar
  116. 116.
    Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003CrossRefGoogle Scholar
  117. 117.
    Prellier W, Smolyaninova V, Biswas A, Galley C, Greene R L, Ramesha K, Gopalakrishnan J. Properties of the ferrimagnetic double perovskites A2FeReO6 (A = Ba and Ca). Journal of Physics Condensed Matter, 2000, 12(6): 965–973CrossRefGoogle Scholar
  118. 118.
    Anderson M T, Poeppelmeier K R. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482CrossRefGoogle Scholar
  119. 119.
    Azad A K, Basheer F, Iskandar Petra P M, Ghosh A, Irvine J T S. Structure-property relationship in Mg-doped La0.75Sr0.25Mn0.5 Cr0.5O3 anode for solid oxide fuel cell. In: 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014: 1115Google Scholar
  120. 120.
    Wang Y, Zhang H, Chen F, Xia C. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34–41CrossRefGoogle Scholar
  121. 121.
    Ghosh A, Azad A K, Irvine J T S. Study of Ga doped LSCM as an anode for SOFC. ECS Transactions, 2011, 35(1): 1337–1343CrossRefGoogle Scholar
  122. 122.
    Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8CrossRefGoogle Scholar
  123. 123.
    Xia C, Liu M. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002, 152–153: 423–430CrossRefGoogle Scholar
  124. 124.
    Brett D J L, Atkinson A, Brandon N P, Skinner S J. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568CrossRefGoogle Scholar
  125. 125.
    Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267CrossRefGoogle Scholar
  126. 126.
    Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 2003, 216(1–2): 477–486CrossRefGoogle Scholar
  127. 127.
    Shri Prakash B, Senthil Kumar S, Aruna S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable & Sustainable Energy Reviews, 2014, 36: 149–179CrossRefGoogle Scholar
  128. 128.
    Huan Y, Li Y, Yin B, Ding D, Wei T. High conductive and long-term phase stable anode materials for SOFCs: A 2FeMoO6 (A = Ca, Sr, Ba). Journal of Power Sources, 2017, 359: 384–390CrossRefGoogle Scholar
  129. 129.
    Zheng K, Świerczek K, Zając W, Klimkowicz A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics, 2014, 257: 9–16CrossRefGoogle Scholar
  130. 130.
    Rath M K, Lee K T. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6−δ as an electrode material for symmetric solid oxide fuel cells. Electro-chimica Acta, 2016, 212: 678–685CrossRefGoogle Scholar
  131. 131.
    dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7CrossRefGoogle Scholar
  132. 132.
    Kumar P, Presto S, Sinha A S K, Varma S, Viviani M, Singh P. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. Journal of Alloys and Compounds, 2017, 725: 1123–1129CrossRefGoogle Scholar
  133. 133.
    Ding H, Tao Z, Liu S, Yang Y. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6−δ double perovskite as anode material. Journal of Power Sources, 2016, 327: 573–579CrossRefGoogle Scholar
  134. 134.
    Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. Molybdenum doped Pr0.5Ba0.5MnO3−δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. Journal of Power Sources, 2016, 301: 237–241CrossRefGoogle Scholar
  135. 135.
    Tomkiewicz A C, Tamimi M A, Huq A, McIntosh S. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330: 240–245CrossRefGoogle Scholar
  136. 136.
    Xu L, Yin Y M, Zhou N, Wang Z, Ma Z F. Sulfur tolerant redox stable layered perovskite SrLaFeO4−δ as anode for solid oxide fuel cells. Electrochemistry Communications, 2017, 76: 51–54CrossRefGoogle Scholar
  137. 137.
    Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Hao X, Yan G. Porous Sr2MgMo1 xVxO6 d ceramics as anode materials for SOFCs using biogas fuel. Catalysis Communications, 2015, 67: 108–111CrossRefGoogle Scholar
  138. 138.
    He B, Wang Z, Zhao L, Pan X, Wu X, Xia C. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. Journal of Power Sources, 2013, 241: 627–633CrossRefGoogle Scholar
  139. 139.
    Escudero M J, Gómez deParada I, Fuerte A, Daza L. Study of Sr2Mg(Mo0.8Nb0.2)O6−δ as anode material for solid oxide fuel cells using hydrocarbons as fuel. Journal of Power Sources, 2013, 243: 654–660CrossRefGoogle Scholar
  140. 140.
    Zhang Q, Wei T, Huang Y H. Electrochemical performance of double-perovskite Ba2MMoO6 (M = Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 198: 59–65CrossRefGoogle Scholar
  141. 141.
    Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. High temperature phase transition in SOFC anodes based on Sr2MgMoO6−δ. Journal of Solid State Chemistry, 2009, 182(5): 1027–1034CrossRefGoogle Scholar
  142. 142.
    Han Z, Wang Y, Yang Y, Li L, Yang Z, Han M. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−δ anodes toward sulfur resistance. Journal of Alloys and Compounds, 2017, 703: 258–263CrossRefGoogle Scholar
  143. 143.
    Gansor P, Xu C, Sabolsky K, Zondlo J W, Sabolsky E M. Phosphine impurity tolerance of Sr2MgMoO6−δ composite SOFC anodes. Journal of Power Sources, 2012, 198: 7–13CrossRefGoogle Scholar
  144. 144.
    Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2−xMoxO6−δ perovskite as an anode in a solid oxide fuel cell: effect of the substitution ratio. Catalysis Today, 2016, 259: 417–422CrossRefGoogle Scholar
  145. 145.
    Zhang L, Zhou Q, He Q, He T. Double-perovskites A 2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366CrossRefGoogle Scholar
  146. 146.
    Jiang L, Liang G, Han J, Huang Y. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270: 441–448CrossRefGoogle Scholar
  147. 147.
    Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ionics, 2010, 180 (40): 1672–1682CrossRefGoogle Scholar
  148. 148.
    Howell T G, Kuhnell C P, Reitz T L, Sukeshini A M, Singh R N. {A 2MgMoO6}(A = Sr,Ba) for use as sulfur tolerant anodes. Journal of Power Sources, 2013, 231: 279–284CrossRefGoogle Scholar
  149. 149.
    Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. Journal of Power Sources, 2011, 196(4): 1738–1743CrossRefGoogle Scholar
  150. 150.
    Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6−δ SOFC-anode material. Solid State Ionics, 2010, 181(15–16): 754–759CrossRefGoogle Scholar
  151. 151.
    Liu Q, Bugaris D E, Xiao G, Chmara M, Ma S, zur Loye H C, Amiridis M D, Chen F. Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196(22): 9148–9153CrossRefGoogle Scholar
  152. 152.
    Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1−x TixNbO6−δas SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673CrossRefGoogle Scholar
  153. 153.
    Martínez-Coronado R, Aguadero A, Alonso J A, Fernández-Díaz M T. Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sciences, 2013, 18: 64–70CrossRefGoogle Scholar
  154. 154.
    Li W, Cheng Y, Zhou Q, Wei T, Li Z, Yan H, Wang Z, Han X. Evaluation of double perovskite Sr2FeTiO6−δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2015, 41(9): 12393–12400CrossRefGoogle Scholar
  155. 155.
    Ding H, Sullivan N P, Ricote S. Double perovskite Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306: 97–103CrossRefGoogle Scholar
  156. 156.
    Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics, 2014, 262: 354–358CrossRefGoogle Scholar
  157. 157.
    Song Y, Zhong Q, Tan W, Pan C. Effect of cobalt-substitution Sr2Fe1.5−xCoxMo0.5O6−δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochimica Acta, 2014, 139: 13–20CrossRefGoogle Scholar
  158. 158.
    Tarancón A, Marrero-López D, Peña-Martínez J, Ruizmorales J, Nunez P. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics, 2008, 179(17–18): 611–618CrossRefGoogle Scholar
  159. 159.
    Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6−δ and hydrogen sulfide in symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22266–22272CrossRefGoogle Scholar
  160. 160.
    Wright J H, Virkar A V, Liu Q, Chen F. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237: 13–18CrossRefGoogle Scholar
  161. 161.
    Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5−δ (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689CrossRefGoogle Scholar
  162. 162.
    Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000CrossRefGoogle Scholar
  163. 163.
    Jiang S P. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003, 124(2): 390–402CrossRefGoogle Scholar
  164. 164.
    Carter S, Selcuk A, Chater R J, Kajda J, Kilner J A, Steele B C H. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53–56: 597–605CrossRefGoogle Scholar
  165. 165.
    Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 2007, 17(24): 2500CrossRefGoogle Scholar
  166. 166.
    Choi S, Kucharczyk C J, Liang Y, Zhang X, Takeuchi I, Ji H I, Haile S M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3 (3): 202–210CrossRefGoogle Scholar
  167. 167.
    Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144CrossRefGoogle Scholar
  168. 168.
    Lü S, Meng X, Ji Y, Fu C, Sun C, Zhao H. Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8094–8096CrossRefGoogle Scholar
  169. 169.
    Jiang X, Wang J, Jia G, Qie Z, Shi Y, Idrees A, Zhang Q, Jiang L. Characterization of PrBa0.92CoCuO6 δ as a potential cathode material of intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42(9): 6281–6289CrossRefGoogle Scholar
  170. 170.
    Tomkiewicz A C, Meloni M, McIntosh S. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260: 55–59CrossRefGoogle Scholar
  171. 171.
    Li H, Sun L P, Li Q, Xia T, Zhao H, Huo L H, Bassat J M, Rougier A, Fourcade S, Grenier J C. Electrochemical performance of double perovskite Pr2NiMnO6 as a potential IT-SOFC cathode. International Journal of Hydrogen Energy, 2015, 40(37): 12761–12769CrossRefGoogle Scholar
  172. 172.
    Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5−δ cathode material for proton-conducting IT-SOFC. Ceramics International, 2015, 41(8): 10276–10280CrossRefGoogle Scholar
  173. 173.
    Jin F J, Liu J, Niu B, Ta L, Li R, Wang Y, Yang X, He T. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439–21449CrossRefGoogle Scholar
  174. 174.
    Fu D, Jin F, He T. A-site calcium-doped Pr1 xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141CrossRefGoogle Scholar
  175. 175.
    Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a briefreview. Journal of Power Sources, 2015, 298: 46–67CrossRefGoogle Scholar
  176. 176.
    Mao X, Yu T, Ma G. Performance ofcobalt-free double-perovskite NdBaFe2 xMnxO5+δ cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 2015, 637: 286–290CrossRefGoogle Scholar
  177. 177.
    Pang S, Wang W, Chen T, Wang Y, Xu K, Shen X, Xi X, Fan J. The effect of potassium on the properties of PrBa1−xCo2O5+δ (x = 0.00-0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(31): 13705–13714CrossRefGoogle Scholar
  178. 178.
    Xia L N, He Z P, Huang X W, Yu Y. Synthesis and properties of SmBaCo2 xNixO5+δ perovskite oxide for IT-SOFC cathodes. Ceramics International, 2016, 42(1): 1272–1280CrossRefGoogle Scholar
  179. 179.
    Jin F, Xu H, Long W, Shen Y, He T. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln = Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10–18CrossRefGoogle Scholar
  180. 180.
    Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics, 2012, 216: 41–43CrossRefGoogle Scholar
  181. 181.
    Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2 xCuxO5+δ at elevated temperatures. Solid State Ionics, 2015, 274: 17–23CrossRefGoogle Scholar
  182. 182.
    Saccoccio M, Jiang C, Gao Y, Chen D, Ciucci F. Nb-substituted PrBaCo2O5+δ as a cathode for solid oxide fuel cells: a systematic study of structural, electrical, and electrochemical properties. International Journal of Hydrogen Energy, 2017, 42(30): 19204–19215CrossRefGoogle Scholar
  183. 183.
    Jin F, Li L, He T. NdBaCo2/3Fe2/3Cu2/3O5+δ double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273: 591–599CrossRefGoogle Scholar
  184. 184.
    Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682–692CrossRefGoogle Scholar
  185. 185.
    Li S, Xia T, Li Q, Sun L, Huo L, Zhao H. A-site Ba-deficiency layered perovskite EuBa1 xCo2O6 δ cathodes for intermediate-temperature solid oxide fuel cells: electrochemical properties and oxygen reduction reaction kinetics. International Journal of Hydrogen Energy, 2017, 42(38): 24412–24425CrossRefGoogle Scholar
  186. 186.
    Jin F, Shen Y, Wang R, He T. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244–251CrossRefGoogle Scholar
  187. 187.
    Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6 δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750CrossRefGoogle Scholar
  188. 188.
    Jin F, Liu J, Shen Y, He T. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δSm0.2-Ce0.8O1.9 (Ln = Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483–491CrossRefGoogle Scholar
  189. 189.
    Xue J, Shen Y, He T. Double-perovskites YBaCo2 xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196(8): 3729–3735CrossRefGoogle Scholar
  190. 190.
    Zhou Q, He T, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185(2): 754–758CrossRefGoogle Scholar
  191. 191.
    Kong X, Liu G, Yi Z, Ding X. NdBaCu2O5+δ and NdBa0.5Sr0.5 Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46): 16477–16483CrossRefGoogle Scholar
  192. 192.
    Wei B, Chen K, Wang C C, Lü Z, Jiang S P. Performance degradation of SmBaCo2O5+δ cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174: 327–331CrossRefGoogle Scholar
  193. 193.
    Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang L, Li X, Sui Y, Yang J. Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6 O5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International, 2014, 40(9, Part B): 14919–14925CrossRefGoogle Scholar
  194. 194.
    Kuroda C, Zheng K, Swierczek K. Characterization of novel GdBa0.5Sr0.5Co2 xFexO5+δperovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 2013, 38(2): 1027–1038CrossRefGoogle Scholar
  195. 195.
    Subardi A, Chen C C, Cheng M H, Chang W K, Fu Y P. Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2016, 204: 118–127CrossRefGoogle Scholar
  196. 196.
    Yu L, Chen Y, Gu Q, Tian D, Lu X, Meng G, Lin B. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33(5): 519–523 (in Chinese)CrossRefGoogle Scholar
  197. 197.
    Donazzi A, Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G, Sora I N. Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC. Electrochimica Acta, 2015, 182: 573–587CrossRefGoogle Scholar
  198. 198.
    Che X, Shen Y, Li H, He T. Assessment of LnBaCo16Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222: 288–293CrossRefGoogle Scholar
  199. 199.
    Pérez-Flores J C, Gómez-Pérez A, Yuste M, Canales-Vázquez J, Climent-Pascual E, Ritter C, Azcondo M T, Amador U, García-Alvarado F. Characterization of La2 xSrxCoTiO6 (0.6⩽x⩽1.0) series as new cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5440–5450CrossRefGoogle Scholar
  200. 200.
    Wang W, Pang S, Su Y, Shen X, Wang Y, Xu K, Xi X, Xiang J. The effect of calcium on the properties of SmBa1−xCaxCoCuO5+δ as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2017, 37(4): 1557–1562CrossRefGoogle Scholar
  201. 201.
    Cascos V, Troncoso L, Alonso J A. New families of Mn+-doped SrCo1 xMxO3 δ perovskites performing as cathodes in solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40(34): 11333–11341CrossRefGoogle Scholar
  202. 202.
    Zhu Z, Tao Z, Bi L, Liu W. Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45(11): 1771–1774CrossRefGoogle Scholar
  203. 203.
    Pang S L, Jiang X N, Li X N, Xu H X, Jiang L, Xu Q L, Shi Y C, Zhang Q Y. Structure and properties of layered-perovskite LaBa1 x Co2O5+δ (x = 0–0.15) as intermediate-temperature cathode material. Journal of Power Sources, 2013, 240: 54–59CrossRefGoogle Scholar
  204. 204.
    Dai N, Wang Z, Jiang T, Feng J, Sun W, Qiao J, Rooney D, Sun K. A new family of barium-doped Sr2Fe1.5Mo0.5O5+δ perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268: 176–182CrossRefGoogle Scholar
  205. 205.
    Tsvetkova N S, Zuev A Y, Tsvetkov D S. Investigation of GdBaCo2 xFexO6+δ (x = 0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2013, 243: 403–408CrossRefGoogle Scholar
  206. 206.
    Zhou Q, Wei W C J, Guo Y, Jia D. LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 19: 36–38CrossRefGoogle Scholar
  207. 207.
    Jiang X, Xu Q, Shi Y, Li X, Zhou W, Xu H, Zhang Q. Synthesis and properties of Sm3+-deficient Sm1−xBaCo2O5+δ perovskite oxides as cathode materials. International Journal of Hydrogen Energy, 2014, 39(21): 10817–10823CrossRefGoogle Scholar
  208. 208.
    Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6 δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41(22): 9538–9546CrossRefGoogle Scholar
  209. 209.
    Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876–4889CrossRefGoogle Scholar
  210. 210.
    Gómez-Pérez A, Yuste M, Pérez-Flores J C, Ritter C, Azcondo M T, Canales-Vázquez J, Gálvez-Sánchez M, Boulahya K, García-Alvarado F, Amador U. The role of the Co2+/Co3+ redox-pair in the properties of La2 xSrxCoTiO6 (0⩽x⩽0.5) perovskites as components for solid oxide fuel cells. Journal of Power Sources, 2013, 227: 309–317CrossRefGoogle Scholar
  211. 211.
    Wang B, Long G, Ji Y, Pang M, Meng X. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 606: 92–96CrossRefGoogle Scholar
  212. 212.
    Yi K, Sun L, Li Q, Xia T, Huo L, Zhao H, Li J, Lü Z, Bassat J M, Rougier A, Fourcade S, Grenier J C. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6−δ cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(24): 10228CrossRefGoogle Scholar
  213. 213.
    Zhou Q, Cheng Y, Li W, Yang X, Liu J, An D, Tong X, Zhong B, Wang W. Investigation of cobalt-free perovskite Sr2FeTi0.75 Mo0.25O6 δ as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016, 74: 129–133CrossRefGoogle Scholar
  214. 214.
    Xue J, Shen Y, He T. Performance of double-proveskite YBa0.5Sr0.5Co2O5+δas cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(11): 6894–6898CrossRefGoogle Scholar
  215. 215.
    Wang Y, Zhao X, Lü S, Meng X, Zhang Y, Yu B, Li X, Sui Y, Yang J, Fu C, Ji Y. Synthesis and characterization of SmSrCo2−x MnxO5+δ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceramics International, 2014, 40(7): 11343–11350CrossRefGoogle Scholar
  216. 216.
    Lü S, Long G, Meng X, Ji Y, Lü B, Zhao H. PrBa0.5Sr0.5Co2O5+δ as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(7): 5914–5919CrossRefGoogle Scholar
  217. 217.
    Lee S J, Kim D S, Jo S H, Muralidharan P, Kim D K. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38(Sup. 1): S493–496CrossRefGoogle Scholar
  218. 218.
    Li X, Jiang X, Xu H, Xu Q, Jiang L, Shi Y, Zhang Q. Scandium-doped PrBaCo2−xScxO6−δ oxides as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38(27): 12035–12042CrossRefGoogle Scholar
  219. 219.
    Choi S, Shin J, Kim G. The electrochemical and thermodynamic characterization of PrBaCo2−xFexO5+δ (x = 0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201: 10–17CrossRefGoogle Scholar
  220. 220.
    Zhu C, Liu X, Yi C, Yan D, Su W. Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185 (1): 193–196CrossRefGoogle Scholar
  221. 221.
    Tarancón A, Morata A, Dezanneau G, Skinner S J, Kilner J A, Estradé S, Hernández-Ramírez F, Peiró F, Morante J R. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 174 (1): 255–263CrossRefGoogle Scholar
  222. 222.
    Ding H, Xue X, Liu X, Meng G. High performance layered SmBa0.5Sr0.5Co2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 194(2): 815–817CrossRefGoogle Scholar
  223. 223.
    Hou M, Sun W, Li P, Feng J, Yang G, Qiao J, Wang Z, Rooney D, Feng J, Sun K. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 272: 759–765CrossRefGoogle Scholar
  224. 224.
    Li X, Jiang X, Shi Y, Zhou W, Xu Q, Xu H, Zhang Q. One-step synthesized nano-composite cathode material of Pr0.83 BaCo1.33Sc0.5O6−δ-0.17PrCoO3 for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39(27): 15039–15045CrossRefGoogle Scholar
  225. 225.
    Zou J, Park J, Kwak B, Yoon H, Chung J. Effect of Fe doping on PrBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2012, 206: 112–119CrossRefGoogle Scholar
  226. 226.
    Zhang Y, Yu B, Lu S, Meng X, Zhao X, Ji Y, Wang Y, Fu C, Liu X, Li X, Sui Y, Lang J, Yang J. Effect of Cu doping on YBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107–115CrossRefGoogle Scholar
  227. 227.
    Lü S, Long G, Ji Y, Meng X, Zhao H, Sun C. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509(6): 2824–2828CrossRefGoogle Scholar
  228. 228.
    Azad A K, Kim J H, Irvine J T S. Structure-property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+δ (Ln = Pr, Nd) for solid oxide fuel cells. Journal of Power Sources, 2011, 196(17): 7333–7337CrossRefGoogle Scholar
  229. 229.
    Hu Y, Bogicevic C, Bouffanais Y, Giot M, Hernandez O, Dezanneau G. Synthesis, physical-chemical characterization and electrochemical performance of GdBaCo2 xNixO5+δ(x = 0−0.8) as cathode materials for IT-SOFC application. Journal of Power Sources, 2013, 242: 50–56CrossRefGoogle Scholar
  230. 230.
    Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature s olid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 291–296CrossRefGoogle Scholar
  231. 231.
    Subardi A, Cheng M H, Fu Y P. Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(35): 20783–20790CrossRefGoogle Scholar
  232. 232.
    Mitchell R H. Perovskites: Modern and Ancient. Ontario, Canada: Almaz Press, 2002Google Scholar
  233. 233.
    Horita T, Kishimoto H, Yamaji K, Brito M E, Xiong Y, Yokokawa H, Hori Y, Miyachi I. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. Journal of Power Sources, 2009, 193(1): 194–198CrossRefGoogle Scholar
  234. 234.
    Tao S W, Irvine J T S. A redox-stable efficient anode for solidoxide fuel cells. Nature Materials, 2003, 2(5): 320–323CrossRefGoogle Scholar
  235. 235.
    Fu Q X, Tietz F. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells (Weinheim), 2008, 8(5): 283–293CrossRefGoogle Scholar
  236. 236.
    Azad A K, Hakem A, Iskandar Petra P M. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs. AIP Conference Proceedings, 2015, 070069Google Scholar
  237. 237.
    Tao S W, Canales-Vazquez J, Irvine J T S. Structural and electrical properties of the perovskite oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16(11): 2309–2316CrossRefGoogle Scholar
  238. 238.
    Téllez Lozano H, Druce J, Cooper S J, Kilner J A. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors? Science and Technology of Advanced Materials, 2017, 18(1): 977–986CrossRefGoogle Scholar
  239. 239.
    Peña-Martínez J, Marrero-López D, Ruiz-Morales J C, Savaniu C, Núñez P, Irvine J T S. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3−δ at lanthanum gallate electrolytes. Chemistry of Materials, 2006, 18 (4): 1001–1006CrossRefGoogle Scholar
  240. 240.
    Danilovic N, Luo J L, Chuang K T, Sanger A R. Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing {CH4} fueled solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 247–257CrossRefGoogle Scholar
  241. 241.
    Azad A K, Irvine J T S. Characterization of YSr2Fe3O8−δ as electrode materials for SOFC. Solid State Ionics, 2011, 192(1): 225–228CrossRefGoogle Scholar
  242. 242.
    Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Double-perovskite anode materials Sr2MMoO6 (M= Co, Ni) for solid oxide fuel cells. Chemistry of Materials, 2009, 21(11): 2319–2326CrossRefGoogle Scholar
  243. 243.
    Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Electrochemical Technology, 2001, 6(5): 1161–1172Google Scholar
  244. 244.
    Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4844CrossRefGoogle Scholar
  245. 245.
    Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3−δ, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society, 2004, 151(2): A252CrossRefGoogle Scholar
  246. 246.
    Tao S W, Irvine J T S. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3−δ in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials, 2004, 16 (21): 4116–4121CrossRefGoogle Scholar
  247. 247.
    Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine J T S. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439 (7076): 568–571CrossRefGoogle Scholar
  248. 248.
    Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 362(1–2): 228–239CrossRefGoogle Scholar
  249. 249.
    Fagg D P, Kharton V V, Kovalevsky A V, Viskup A P, Naumovich E N, Frade J R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential anode materials. Journal of the European Ceramic Society, 2001, 21(10–11): 1831–1835CrossRefGoogle Scholar
  250. 250.
    Touleva A, Yufit V, Simons S, Maskell W C, Brett D J L. A review of liquid metal anode solid oxide fuel cells. Journal of Electrochemical Science and Engineering, 2013, 3(3): 91–105Google Scholar
  251. 251.
    Wang X, Yu B, Zhang W, Chen J, Luo X, Stephan K. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(17): 12833–12838CrossRefGoogle Scholar
  252. 252.
    dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7CrossRefGoogle Scholar
  253. 253.
    Saines P J, Kennedy B J. Phase segregation in mixed Nb-Sb double perovskites Ba2LnNb1−xSbxO6−δ. Journal of Solid State Chemistry, 2008, 181(2): 298–305CrossRefGoogle Scholar
  254. 254.
    Tonus F, Bahout M, Dorcet V, Sharma R K, Djurado E, Paofai S, Smith R I, Skinner S J. A-site order-disorder in the NdBaMn2O5+δ SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11078–11085CrossRefGoogle Scholar
  255. 255.
    Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B, Rosseinsky M J. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6−δ as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154–5162CrossRefGoogle Scholar
  256. 256.
    Afroze S, Abdalla A M, Radenahmad N, et al. Synthesis, structural and thermal properties of double perovskite NdSrMn2O6 as potential anode materials for solid oxide fuel cells. In: 7th Brunei International Conference on Engineering and Technology 2017 (BICET 2017), Antalya, Turkey, 2018Google Scholar
  257. 257.
    Falcón H, Barbero J A, Araujo G, Casais M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A 2FeMoO6−δ (A = Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45CrossRefGoogle Scholar
  258. 258.
    Philipp B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A 2CrWO6 (A = Sr, Ba, and Ca). Physical Review B: Condensed Matter and Materials Physics, 2003, 68(14): 144431CrossRefGoogle Scholar
  259. 259.
    Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah HQHH, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1 xTixNbO6 δ as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673CrossRefGoogle Scholar
  260. 260.
    Zhang L, He T. Performance of double-perovskite Sr2−x SmxMgMoO6−δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359CrossRefGoogle Scholar
  261. 261.
    Zhang L L, Zhou Q J, He Q, He T. Double-perovskites A 2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366CrossRefGoogle Scholar
  262. 262.
    Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets. Physical Review. B, 1998, 57(17): 10613–10619CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-VerlagGmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shammya Afroze
    • 1
  • AfizulHakem Karim
    • 1
  • Quentin Cheok
    • 1
  • Sten Eriksson
    • 2
  • Abul K. Azad
    • 1
    Email author
  1. 1.Faculty of Integrated TechnologiesUniversiti Brunei Darussalam, Jalan Tunku LinkGadongBrunei Darussalam
  2. 2.Department of Chemistry and Chemical Engineering, Energy and Materials, Environmental Inorganic ChemistryChalmers University of TechnologyGoteborgSweden

Personalised recommendations