Frontiers in Energy

, Volume 12, Issue 4, pp 501–508 | Cite as

A perspective on the promoting effect of Ir and Au on Pd toward the ethanol oxidation reaction in alkaline media

  • S. Y. Shen
  • Y. G. Guo
  • G. H. Wei
  • L. X. Luo
  • F. Li
  • J. L. ZhangEmail author
Research Article


There remain great challenges in developing highly efficient electrocatalysts with both high activity and good stability for the ethanol oxidation reaction in alkaline media. Herein, two architectures of tri-metallic PdIrAu/C electrocatalysts are designed and the promoting effect of Au and Ir on Pd toward the ethanol oxidation reaction (EOR) in alkaline media is investigated in detail. On the one hand, the tri-metallic Pd7Au7Ir/C electrocatalyst with a solid solution alloy architecture is less active relative to Pd7Ir/C and Pd/C while the stabilizing effect of Au leads to both a higher activity and a lower degradation percentage after 3000 cycles of the accelerated degradation test (ADT) on Pd7Au7Ir/C than those on Pd7Ir/C. On the other hand, the tri-metallic Pd7Ir@(1/3Au)/C electrocatalyst with a near surface alloy architecture delivers a much higher activity with an improvement up to 50.4% compared to Pd7Ir/C. It is speculated that for the tri-metallic Pd7Ir@(1/3Au)/C electrocatalyst, certain Au atoms are well designed on surfaces to introduce an electronic modification, thus leading to an anti-poisoning effect and improving the EOR activity.


fuel cells catalysts ethanol oxidation alkaline media solid solution alloy near surface alloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 21503134 and 21533005), and the National Key Research and Development Program of China (Grant No. 2016YFB0101201).


  1. 1.
    Johansson T B, Kelly H, Reddy A K N, Williams R H. Renewable Energy: Sources for Fuels and Electricity. Washington: Island Press, 1993Google Scholar
  2. 2.
    Chum H L, Overend R P. Biomass and renewable fuels. Fuel Processing Technology, 2001, 71(1–3): 187–195CrossRefGoogle Scholar
  3. 3.
    Vielstich W, Yokokawa H, Gasteiger H A. Handbook of Fuel Cells: Fundamentals Technology and Applications. Chichester: John Wiley & Sons, 2009Google Scholar
  4. 4.
    Carrette L, Friedrich K A, Stimming U. Fuel cells–fundamentals and applications. Fuel Cells, 2001, 1(1): 5–39CrossRefGoogle Scholar
  5. 5.
    Li Y S, Feng Y, Sun X D, He Y L. A sodium-ion-conducting direct formate fuel cell: yielding electricity and base. Angewandte Chemie International Edition, 2017, 56(21): 5734–5737CrossRefGoogle Scholar
  6. 6.
    Yu E H, Wang X, Krewer U, Li L, Scott K. Direct oxidation alkaline fuel cells: from materials to systems. Energy & Environmental Science, 2012, 5(2): 5668–5680CrossRefGoogle Scholar
  7. 7.
    Zhao T S, Li Y S, Shen S Y. Anion-exchange membrane direct ethanol fuel cells: status and perspective. Frontiers of Energy and Power Engineering in China, 2010, 4(4): 443–458CrossRefGoogle Scholar
  8. 8.
    Li Y S, Sun X D, Feng Y. Hydroxide-self-feeding high-temperature alkaline direct formate fuel cells. ChemSusChem, 2017, 10(10): 2135–2139CrossRefGoogle Scholar
  9. 9.
    Yu E H, Krewer U, Scott K. Principles and materials aspects of direct alkaline alcohol fuel cells. Energies, 2010, 3(8): 1499–1528CrossRefGoogle Scholar
  10. 10.
    Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews, 2010, 41(3): 4183–4206Google Scholar
  11. 11.
    Shen S Y, Zhao T S, Xu J B, Li Y S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. Journal of Power Sources, 2010, 35(23): 12911–12917Google Scholar
  12. 12.
    Zhang Z, Zhang C, Sun J, et al. Ultrafine nanoporous Pd Fe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(11): 3620–3628CrossRefGoogle Scholar
  13. 13.
    Mukherjee P, Roy P S, Mandal K, Bhattacharjee D, Dasgupta S, Bhattacharya S K. Improved catalysis of room temperature synthesized Pd-Cu alloy nanoparticles for anodic oxidation of ethanol in alkaline media. Electrochimica Acta, 2015, 154: 447–455CrossRefGoogle Scholar
  14. 14.
    Peng C, Hu Y, Liu M, Zheng Y. Hollow raspberry-like PdAg alloy nanospheres: high electrocatalytic activity for ethanol oxidation in alkaline media. Journal of Power Sources, 2015, 278: 69–75CrossRefGoogle Scholar
  15. 15.
    Ma L, He H, Hsu A, Chen R R. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. Journal of Power Sources, 2013, 241(241): 696–702CrossRefGoogle Scholar
  16. 16.
    Maksić A, Smiljanić M, Miljanić Š, Rakočević Z, Štrbac S. Ethanol oxidation on Rh/Pd(poly) in alkaline solution. Electrochimica Acta, 2016, 209: 323–331CrossRefGoogle Scholar
  17. 17.
    Ma Y W, Zhang H M, Zhong H X, Xu T, Jin H, Geng X Y. High active PtAu/C catalyst with core–shell structure for oxygen reduction reaction. Catalysis Communications, 2010, 11(5): 434–437CrossRefGoogle Scholar
  18. 18.
    Zhang J L, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220–222CrossRefGoogle Scholar
  19. 19.
    Liang Z X, Zhao T S, Xu J B. Stabilization of the platinum–ruthenium electrocatalyst against the dissolution of ruthenium with the incorporation of gold. Journal of Power Sources, 2008, 185(1): 166–170CrossRefGoogle Scholar
  20. 20.
    Xu J B, Zhao T S, Shen S Y, Li Y S. Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. International Journal of Hydrogen Energy, 2010, 35(13): 6490–6500CrossRefGoogle Scholar
  21. 21.
    Shen S Y, Guo Y G, Luo L X, Li F, Li L, Wei G H, Yin J W, Ke C C, Zhang J L. Comprehensive analysis on the highly active and stable PdAu/C electrocatalyst for ethanol oxidation reaction in alkaline media. Journal of Physical Chemistry C, 2018, 122(3): 1604–1611CrossRefGoogle Scholar
  22. 22.
    Shen S Y, Zhao T S, Xu J B. Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media. Electrochimica Acta, 2010, 55(28): 9179–9184CrossRefGoogle Scholar
  23. 23.
    Liang Y, Zhang H, Zhong H, Zhu X, Tian Z, Xu D, Yi B. Preparation and characterization of carbon-supported PtRuIr catalyst with excellent co-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis, 2006, 238(2): 468–476CrossRefGoogle Scholar
  24. 24.
    Chen A, La Russa D J, Miller B. Effect of the iridium oxide thin film on the electrochemical activity of platinum nanoparticles. Langmuir, 2004, 20(22): 9695–9702CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Y. Shen
    • 1
  • Y. G. Guo
    • 1
  • G. H. Wei
    • 2
  • L. X. Luo
    • 1
  • F. Li
    • 1
  • J. L. Zhang
    • 1
    Email author
  1. 1.Institute of Fuel Cells, School of Mechanical Engineering, MOE Key Laboratory of Power & Machinery EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.SJTU-Paris Tech Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations