Frontiers in Energy

, Volume 12, Issue 1, pp 87–96 | Cite as

Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies

  • Guangzhao Qin
  • Ming Hu
Review Article


Phosphorene, a two-dimensional (2D) elemental semiconductor with a high carrier mobility and intrinsic direct band gap, possesses fascinating chemical and physical properties distinctively different from other 2D materials. Its rapidly growing applications in nano-/optoelectronics and thermoelectrics call for fundamental understanding of the thermal transport properties. Considering the fact that there have been so many studies on the thermal transport in phosphorene, it is on emerging demand to have a review on the progress of previous studies and give an outlook on future work. In this minireview, the unique thermal transport properties of phosphorene induced by the hinge-like structure are examined. There exists a huge deviation in the reported thermal conductivity of phosphorene in literature. Besides, the mechanism underlying the deviation is discussed by reviewing the effect of different functionals and cutoff distance in calculating the thermal transport properties of phosphorene. It is found that the van der Waals (vdW) interactions play a key role in the formation of resonant bonding, which leads to long-ranged interactions. Taking into account of the vdW interactions and including the long-ranged interactions caused by the resonant bonding with large cutoff distance are important for getting the accurate and converged thermal conductivity of phosphorene. Moreover, a fundamental insight into the thermal transport is provided based on the review of resonant bonding in phosphorene. This mini-review summarizes the progress of the thermal transport in phosphorene and gives an outlook on future horizons, which would benefit the design of phosphorene based nano-electronics.


thermal transport phosphorene resonant bonding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (project number: HU 2269/2-1).


  1. 1.
    Balandin A A, Nika D L. Phononics in low-dimensional materials. Materials Today, 2012, 15(6): 266–275CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Wang H, Luo Z, Tan H T, Li B, Sun S, Li Z, Zong Y, Xu Z J, Yang Y, Khor K A, Yan Q. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453CrossRefGoogle Scholar
  3. 3.
    Wan F, Wu X L, Guo J Z, Li J Y, Zhang J P, Niu L, Wang R S. Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy, 2015, 13: 450–457CrossRefGoogle Scholar
  4. 4.
    Liu D H, Lü H Y, Wu X L, Wang J, Yan X, Zhang J P, Geng H B, Zhang Y, Yan Q Y. A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz, 2016, 1(6): 496–501CrossRefGoogle Scholar
  5. 5.
    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041CrossRefGoogle Scholar
  6. 6.
    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377CrossRefGoogle Scholar
  7. 7.
    Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458CrossRefGoogle Scholar
  8. 8.
    Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(23): 235319CrossRefGoogle Scholar
  9. 9.
    Churchill H O H, Jarillo-Herrero P. Two-dimensional crystals: phosphorus joins the family. Nature Nanotechnology, 2014, 9(5): 330–331CrossRefGoogle Scholar
  10. 10.
    Koenig S P, Doganov R A, Schmidt H, Castro Neto A H, Ozyilmaz B. Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014, 104(10): 103106CrossRefGoogle Scholar
  11. 11.
    Qin G, Qin Z, Yue S Y, Yan Q B, Hu M. External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale, 2017, 9(21): 7227–7234CrossRefGoogle Scholar
  12. 12.
    Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801CrossRefGoogle Scholar
  13. 13.
    Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5: 4475CrossRefGoogle Scholar
  14. 14.
    Zhu Z, Tománek D. Semiconducting layered blue phosphorus: a computational study. Physical Review Letters, 2014, 112(17): 176802CrossRefGoogle Scholar
  15. 15.
    Jiang J W, Park H S. Negative Poisson’s ratio in single-layer black phosphorus. Nature Communications, 2014, 5: 4727CrossRefGoogle Scholar
  16. 16.
    Wei Q, Peng X H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014, 104 (25): 251915CrossRefGoogle Scholar
  17. 17.
    Qin G, Yan Q B, Qin Z, Yue S Y, Cui H J, Zheng Q R, Su G. Corrigendum: hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Scientific Reports, 2016, 6(1): 21233CrossRefGoogle Scholar
  18. 18.
    Low T, Engel M, Steiner M, Avouris P. Origin of photoresponse in black phosphorus phototransistors. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 081408CrossRefGoogle Scholar
  19. 19.
    Lv H Y, Lu W J, Shao D F, Sun Y P. Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085433CrossRefGoogle Scholar
  20. 20.
    Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5: 5678CrossRefGoogle Scholar
  21. 21.
    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Letters, 2014, 14(11): 6393–6399CrossRefGoogle Scholar
  22. 22.
    Zhu J, Park H, Chen J, Gu X, Zhang H, Karthikeyan S, Wendel N, Campbell S A, Dawber M, Du X, Li M, Wang J, Yang R, Wang X. Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Advanced Electronic Materials, 2016, 2 (5):1600040CrossRefGoogle Scholar
  23. 23.
    Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 2015, 6: 8572CrossRefGoogle Scholar
  24. 24.
    Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung Choe H, Suslu A, Chen Y, Ko C, Park J, Liu K, Li J, Hippalgaonkar K, Urban J J, Tongay S, Wu J. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100K. Nature Communications, 2015, 6: 8573CrossRefGoogle Scholar
  25. 25.
    Jang H, Wood J D, Ryder C R, Hersam M C, Cahill D G. Anisotropic thermal conductivity of exfoliated black phosphorus. Advanced Materials, 2015, 27(48): 8017–8022CrossRefGoogle Scholar
  26. 26.
    Liu T H, Chang C C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale, 2015, 7(24): 10648–10654CrossRefGoogle Scholar
  27. 27.
    Hong Y, Zhang J, Huang X, Zeng X C. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene. Nanoscale, 2015, 7(44): 18716–18724CrossRefGoogle Scholar
  28. 28.
    Xu W, Zhu L, Cai Y, Zhang G, Li B. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger-Weber potential and molecular dynamics study. Journal of Applied Physics, 2015, 117(21): 214308CrossRefGoogle Scholar
  29. 29.
    Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale, 2016, 8(1): 483–491CrossRefGoogle Scholar
  30. 30.
    Zhu L, Zhang G, Li B. Coexistence of size-dependent and sizeindependent thermal conductivities in phosphorene. Physical Review B: Condensed Matter and Materials Physics, 2014, 90 (21): 214302Google Scholar
  31. 31.
    Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501CrossRefGoogle Scholar
  32. 32.
    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 4854–4858CrossRefGoogle Scholar
  33. 33.
    Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in multilayer graphene and graphite. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(23): 235428CrossRefGoogle Scholar
  34. 34.
    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162CrossRefGoogle Scholar
  35. 35.
    Zhang X L, Xie H, Hu M, Bao H, Yue S Y, Qin G Z, Su G. Thermal conductivity of silicene calculated using an optimized Stillinger- Weber potential. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(5): 054310CrossRefGoogle Scholar
  36. 36.
    Xie H, Hu M, Bao H. Thermal conductivity of silicene from firstprinciples. Applied Physics Letters, 2014, 104(13): 131906CrossRefGoogle Scholar
  37. 37.
    Fei R, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Letters, 2014, 14(5): 2884–2889CrossRefGoogle Scholar
  38. 38.
    Qin G, Zhang X L, Yue S Y, Qin Z, Wang H M, Han Y, Hu M. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(16): 165445CrossRefGoogle Scholar
  39. 39.
    Qin G, Qin Z, Fang W Z, Zhang L C, Yue S Y, Yan Q B, Hu M, Su G. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: a comparative study. Nanoscale, 2016, 8 (21): 11306–11319CrossRefGoogle Scholar
  40. 40.
    Zhang L C, Qin G, Fang W Z, Cui H J, Zheng Q R, Yan Q B, Su G. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility. Scientific Reports, 2016, 6: 19830CrossRefGoogle Scholar
  41. 41.
    Ong Z Y, Cai Y, Zhang G, Zhang Y W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. Journal of Physical Chemistry C, 2014, 118(43): 25272–25277CrossRefGoogle Scholar
  42. 42.
    Smith B, Vermeersch B, Carrete J, Ou E, Kim J, Mingo N, Akinwande D, Shi L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Advanced Materials, 2017, 29(5): 1603756CrossRefGoogle Scholar
  43. 43.
    Thomas J A, Turney J E, Iutzi R M, Amon C H, McGaughey A J H. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(8): 081411CrossRefGoogle Scholar
  44. 44.
    Larkin J, Turney J, Massicotte A, Amon C, Mc-Gaughey A. Comparison and evaluation of spectral energy methods for predicting phonon properties. Journal of Computational and Theoretical Nanoscience, 2014, 11(1): 249–256CrossRefGoogle Scholar
  45. 45.
    Zhang X, Bao H, Hu M. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon. Nanoscale, 2015, 7(14): 6014–6022CrossRefGoogle Scholar
  46. 46.
    Sun B, Gu X, Zeng Q, Huang X, Yan Y, Liu Z, Yang R, Koh Y K. Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus. Advanced Materials, 2017, 29(3): 1603297CrossRefGoogle Scholar
  47. 47.
    Li W, Carrete J, Mingo N. Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Applied Physics Letters, 2013, 103(25): 253103CrossRefGoogle Scholar
  48. 48.
    Li W, Mingo N, Lindsay L, Broido D A, Stewart D A, Katcho N A. Thermal conductivity of diamond nanowires from first principles. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195436CrossRefGoogle Scholar
  49. 49.
    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Applied Physics Letters, 2007, 91(23): 231922CrossRefGoogle Scholar
  50. 50.
    Li W, Lindsay L, Broido D A, Stewart D A, Mingo N. Thermal conductivity of bulk and nanowire Mg2SixSn1–x alloys from first principles. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(17): 174307CrossRefGoogle Scholar
  51. 51.
    Li W, Carrete J, Katcho N A, Mingo N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Computer Physics Communications, 2014, 185(6): 1747–1758CrossRefzbMATHGoogle Scholar
  52. 52.
    Carrete J, Li W, Mingo N, Wang S, Curtarolo S. Finding unprecedentedly low-thermal-conductivity half-heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019CrossRefGoogle Scholar
  53. 53.
    Jain A, McGaughey A J. Effect of exchange-correlation on firstprinciples- driven lattice thermal conductivity predictions of crystalline silicon. Computational Materials Science, 2015, 110: 115–120CrossRefGoogle Scholar
  54. 54.
    Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G. Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5(4): 3525CrossRefGoogle Scholar
  55. 55.
    Hu Z X, Kong X, Qiao J, Normand B, Ji W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale, 2016, 8(5): 2740–2750CrossRefGoogle Scholar
  56. 56.
    Kong B D, Paul S, Nardelli MB, Kim K W. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Physical Review B: Condensed Matter, 2009, 80(3): 033406CrossRefGoogle Scholar
  57. 57.
    Cocemasov A I, Nika D L, Balandin A A. Phonons in twisted bilayer graphene. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(3): 035428CrossRefGoogle Scholar
  58. 58.
    Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Balandin A A, Chen S. Thermal conductivity of twisted bilayer graphene. Nanoscale, 2014, 6(22): 13402–13408CrossRefGoogle Scholar
  59. 59.
    Zhang X, Gao Y, Chen Y, Hu M. Robustly engineering thermal conductivity of bilayer graphene by interlayer bonding. Scientific Reports, 2016, 6(1): 22011CrossRefGoogle Scholar
  60. 60.
    Qin G, Qin Z, Wang H, Hu M. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1/T law. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(19): 195416CrossRefGoogle Scholar
  61. 61.
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581CrossRefGoogle Scholar
  62. 62.
    Gu X, Yang R. First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. Journal of Applied Physics, 2015, 117(2): 025102CrossRefGoogle Scholar
  63. 63.
    Xie H, Ouyang T, Germaneau É, Qin G, Hu M, Bao H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Physical Review B: Condensed Matter and Materials Physics, 2016, 93(7): 075404CrossRefGoogle Scholar
  64. 64.
    Bonini N, Garg J, Marzari N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Letters, 2012, 12(6): 2673–2678CrossRefGoogle Scholar
  65. 65.
    Kuang Y, Lindsay L, Shi S, Wang X, Huang B. Thermal conductivity of graphene mediated by strain and size. International Journal of Heat and Mass Transfer, 2016, 101(1): 772–778CrossRefGoogle Scholar
  66. 66.
    Kuang Y D, Lindsay L, Shi S Q, Zheng G P. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene. Nanoscale, 2016, 8(6): 3760–3767CrossRefGoogle Scholar
  67. 67.
    Lucovsky G, White R M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1973, 8(2): 660–667CrossRefGoogle Scholar
  68. 68.
    Shportko K, Kremers S, Woda M, Lencer D, Robertson J, Wuttig M. Resonant bonding in crystalline phase-change materials. Nature Materials, 2008, 7(8): 653–658CrossRefGoogle Scholar
  69. 69.
    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M. A map for phase-change materials. Nature Materials, 2008, 7 (12): 972–977CrossRefGoogle Scholar
  70. 70.
    Matsunaga T, Yamada N, Kojima R, Shamoto S, Sato M, Tanida H, Uruga T, Kohara S, Takata M, Zalden P, Bruns G, Sergueev I, Wille H C, Hermann R P, Wuttig M. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Advanced Functional Materials, 2011, 21(12): 2232–2239CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Aachen Institute for Advanced Study in Computational Engineering Science (AICES)RWTH Aachen UniversityAachenGermany

Personalised recommendations